Chapter 2 Fair Game Review

Estimate the product or quotient.

1. \(91 \times 17\)
2. \(57 \times 29\)

3. \(83 \div 18\)
4. \(204 \div 9\)

5. \(152 \div 31\)
6. \(13 \times 78\)

7. \(32 \times 51\)
8. \(651 \div 49\)

9. There are 546 people attending a charity event. You are baking cookies to give away. Each batch makes 48 cookies. Estimate the number of batches you need to make so that each person gets one cookie.
Find the product or quotient.

10. \[351 \times 15\]
11. \[187 \times 27\]

12. \[9\overline{333}\]
13. \[3\overline{474}\]

14. A bleacher row can seat 14 people. The bleachers are filled to capacity with 1330 people at a soccer game. How many rows of bleachers does the soccer field have?
2.1 Multiplying Fractions

For use with Activity 2.1

Essential Question What does it mean to multiply fractions?

1 ACTIVITY: Multiplying Fractions

Work with a partner. A bottle of water is $\frac{1}{2}$ full. You drink $\frac{2}{3}$ of the water.

How much of the bottle of water do you drink?

THINK ABOUT THE QUESTION: To help you think about this question, rewrite the question.

Words: What is $\frac{2}{3}$ of $\frac{1}{2}$?

Numbers: $\frac{2}{3} \times \frac{1}{2} = ?$

Here is one way to get the answer.

- Draw a segment to represent a length of $\frac{1}{2}$.

- Show how to divide $\frac{1}{2}$ into three equal parts.

- Rewrite $\frac{1}{2}$ as a fraction whose numerator is divisible by 3.

- Each part is $\frac{1}{6}$ of the bottle of water, and you drank two of them. Written as multiplication, you have $\frac{2}{3} \times \frac{1}{2} = \frac{2}{6} \times \frac{1}{2} = \frac{1}{3}$.

You drank $\frac{1}{3}$ of the bottle of water.
2.1 Multiplying Fractions (continued)

2 ACTIVITY: Multiplying Fractions

A park has a playground that is \(\frac{3}{4} \) of its width and \(\frac{4}{5} \) of its length. What fraction of the park is covered by the playground?

Fold a piece of paper horizontally into fourths and shade three of the fourths to represent \(\frac{3}{4} \).

Fold the paper vertically into fifths and shade \(\frac{4}{5} \) of the paper another color.

Count the total number of squares. This number is the denominator. The numerator is the number of squares shaded with both colors.

\[
\frac{3}{4} \times \frac{4}{5} = \quad = \quad . \text{ So, } \quad \text{ of the park is covered by the playground.}
\]

Inductive Reasoning

Work with a partner. Complete the table by using a model or folding paper.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Verbal Expression</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. (\frac{2}{3} \times \frac{1}{2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. (\frac{3}{4} \times \frac{4}{5})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. (\frac{2}{3} \times \frac{5}{6})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. (\frac{1}{6} \times \frac{1}{4})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. (\frac{2}{5} \times \frac{1}{2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. (\frac{5}{8} \times \frac{4}{5})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.1 Multiplying Fractions (continued)

What Is Your Answer?

9. IN YOUR OWN WORDS What does it mean to multiply fractions?

10. STRUCTURE Write a general rule for multiplying fractions.
Multiply. Write the answer in simplest form.

1. \(\frac{1}{6} \times \frac{5}{8} \)

2. \(\frac{7}{9} \times 3 \)

3. \(\frac{8}{9} \times \frac{3}{5} \)

4. \(\frac{7}{8} \times \frac{2\,\frac{1}{3}}{3} \)

5. \(7 \times \frac{9}{14} \)

6. \(\frac{5\,\frac{5}{9}}{9} \times \frac{2\,\frac{7}{10}}{10} \)

7. You reserve \(\frac{2}{5} \) of the seats on a tour bus. You are able to fill \(\frac{5}{8} \) of the seats you reserve. What fraction of the seats on the bus are you able to fill?

8. A triangle has a base of \(5\,\frac{2}{3} \) inches and a height of 3 inches. What is the area of the triangle?
2.2 Dividing Fractions

For use with Activity 2.2

Essential Question How can you divide by a fraction?

1 ACTIVITY: Dividing by a Fraction

Work with a partner. Write the division problem and solve it using a model.

a. How many two-thirds are in three?

The division problem is ______________.

\[
\begin{array}{c}
\text{1} \\
\hline
\text{2} \quad \text{2} \quad \text{2} \\
\text{3} \quad \text{3} \quad \text{3} \\
\text{3} \quad \text{Remaining piece}
\end{array}
\]

How many groups of \(\frac{2}{3}\) are in 3? __________

The remaining piece represents __________ of \(\frac{2}{3}\).

So, there are __________ groups of \(\frac{2}{3}\) in 3.

So, __________ + __________ = __________.

b. How many halves are in five halves?

\[
\begin{array}{c}
\text{1} \\
\hline
\text{1} \\
\text{1} \\
\frac{1}{2}
\end{array}
\]

c. How many four-fifths are in eight?
2.2 Dividing Fractions (continued)

d. How many one-thirds are in seven halves?

e. How many three-fourths are in five halves?

ACTIVITY: Using Tables to Recognize a Pattern

Work with a partner.

a. Complete each table.

<table>
<thead>
<tr>
<th>Division Table</th>
<th>Multiplication Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 ÷ 16</td>
<td>8 × (\frac{1}{16})</td>
</tr>
<tr>
<td>8 ÷ 8</td>
<td>8 × (\frac{1}{8})</td>
</tr>
<tr>
<td>8 ÷ 4</td>
<td>8 × (\frac{1}{4})</td>
</tr>
<tr>
<td>8 ÷ 2</td>
<td>8 × (\frac{1}{2})</td>
</tr>
<tr>
<td>8 ÷ 1</td>
<td>8 × 1</td>
</tr>
<tr>
<td>8 ÷ (\frac{1}{2})</td>
<td>8 × 2</td>
</tr>
<tr>
<td>8 ÷ (\frac{1}{4})</td>
<td>8 × 4</td>
</tr>
<tr>
<td>8 ÷ (\frac{1}{8})</td>
<td>8 × 8</td>
</tr>
</tbody>
</table>
2.2 Dividing Fractions (continued)

b. Describe the relationship between the numbers in the right column of the division table and the numbers in the right column of the multiplication table.

c. Describe the relationship between the shaded numbers in the division table and the shaded numbers in the multiplication table.

d. **STRUCTURE** Make a conjecture about how you can use multiplication to divide by a fraction.

e. Test your conjecture using the problems in Activity 1.

What Is Your Answer?

3. **IN YOUR OWN WORDS** How can you divide by a fraction? Give an example.

4. How many halves are in a fourth? Explain how you found your answer.
2.2 Practice
For use after Lesson 2.2

Complete the statement.

1. \(\frac{3}{8} \times \underline{} = 1 \)
2. \(7 \times \underline{} = 1 \)
3. \(3 \div \underline{} = 36 \)
4. \(\frac{4}{9} \div \underline{} = 12 \)

Evaluate the expression.

5. \(\frac{1}{3} + \frac{1}{6} \)
6. \(\frac{3}{8} + \frac{5}{8} \)
7. \(6 + \frac{2}{5} \)

8. \(\frac{4}{9} + \frac{2}{3} + \frac{5}{6} \)
9. \(\frac{1}{3} + \frac{4}{7} + \frac{3}{10} \)
10. \(\frac{7}{8} \cdot \frac{4}{5} + \frac{7}{20} \)

11. In a jewelry store, rings make up \(\frac{5}{9} \) of the inventory. Earrings make up \(\frac{4}{15} \) of the inventory. How many times greater is the ring inventory than the earring inventory?
2.3 Dividing Mixed Numbers
For use with Activity 2.3

Essential Question How can you model division by a mixed number?

1 ACTIVITY: Writing a Story

Work with a partner. Think of a story that uses division by a mixed number.

a. Write your story. Then draw pictures for your story.

b. Solve the division problem and use the answer in your story. Include a diagram of the division problem.

There are many possible stories. Here is one that uses $6 \div 1\frac{1}{2}$.

Joe goes on a camping trip with his aunt, his uncle, and three cousins. They leave at 5:00 P.M. and drive 2 hours to the campground.

Joe helps his uncle put up three tents. His aunt cooks hamburgers on a grill that is over a fire.

In the morning, Joe tells his aunt that he is making pancakes. He decides to triple the recipe so there will be plenty of pancakes for everyone. A single recipe uses 2 cups of water, so he needs a total of 6 cups.
Joe’s aunt has a 1-cup measuring cup and a ½-cup measuring cup. The water faucet is about 50 yards from the campsite. Joe tells his cousins that he can get 6 cups of water in only 4 trips.

When his cousins ask him how he knows that, he uses a stick to draw a diagram in the dirt. Joe says, “This diagram shows that there are four 1½s in 6.” In other words,

\[6 \div 1 \frac{1}{2} = 4. \]

2 ACTIVITY: Dividing Mixed Numbers

Work with a partner. Write the division problem and solve it using a model.

a. How many three-fourths are in four and one-half?

b. How many five-sixths are in three and one-third?
2.3 Dividing Mixed Numbers (continued)

c. How many three-eighths are in three and three-fourths?

d. How many one and one-half are in six?

e. How many one and one-fifths are in five?

f. How many one and one-fourths are in four and one-half?

g. How many two and one-thirds are in five and five-sixths?

What Is Your Answer?

3. IN YOUR OWN WORDS How can you model division by a mixed number?

4. Can you think of another method you can use to obtain your answers in Activity 2?
2.3 Practice
For use after Lesson 2.3

Divide. Write the answer in simplest form.

1. \(\frac{1}{6} + 5\)
2. \(\frac{5}{8} + 5\frac{3}{4}\)
3. \(\frac{8}{6} + 2\frac{1}{24}\)

4. \(\frac{23}{10} + \frac{3}{5}\)
5. \(\frac{6}{7} + 3\frac{3}{5}\)
6. \(\frac{3}{5} + 6\frac{6}{7}\)

Evaluate the expression.

7. \(\frac{7}{12} + \frac{3}{4} \times \frac{3}{11}\)
8. \(9 + 8 \frac{1}{10} - \frac{5}{9}\)
9. \(\frac{7}{8} \times \left(2 \frac{4}{5} + 7\right)\)

10. At a road race, you have \(60 \frac{3}{4}\) feet available for a water station. Your tables are \(6\frac{3}{4}\) feet long. How many tables can you line up for the water station?
2.4 Adding and Subtracting Decimals

For use with Activity 2.4

Essential Question How can you add and subtract decimals?

Base ten blocks can be used to model numbers.*

Work with a partner. Use base ten blocks to find the sum.

a. 1.23 + 0.87

Which base ten blocks do you need to model the numbers in the sum?
How many of each do you need? Draw a sketch of your model.

How many of each base ten block do you have when you combine the blocks?

________ ones ________ tenths ________ hundredths

How many of each base ten block do you have when you trade the blocks?

________ ones ________ tenths ________ hundredths

So, 1.23 + 0.87 = ________.

b. 1.25 + 1.35 c. 2.14 + 0.92 d. 0.73 + 0.86

*Cut-outs are available in the back of the Record and Practice Journal.
2.4 Adding and Subtracting Decimals (continued)

2 ACTIVITY: Modeling a Difference

Work with a partner. Use base ten blocks to find the difference.

a. \(2.43 - 0.73\)

Which number is shown by the model?

Circle the portion of the model that represents 0.73.

So, \(2.43 - 0.73 = ________\).

b. \(1.86 - 1.26\)

c. \(3.72 - 0.5\)

d. \(1.58 - 0.09\)

3 ACTIVITY: Making a Conjecture

Work with a partner.

a. Find each sum or difference.

\[
\begin{align*}
123 + 87 & \quad 125 + 135 & \quad 214 + 92 & \quad 73 + 86 \\
243 - 73 & \quad 186 - 126 & \quad 372 - 50 & \quad 158 - 9
\end{align*}
\]

b. How are the numerical expressions in part (a) related to the numerical expressions in Activities 1 and 2? How are the sums and differences related?

c. STRUCTURE There is a relationship between adding and subtracting decimals and adding and subtracting whole numbers. What conjecture can you make about this relationship?
2.4 Adding and Subtracting Decimals (continued)

4 ACTIVITY: Using a Place Value Chart

Work with a partner. Use the place value chart to find the sum or difference.

Place Value Chart

<table>
<thead>
<tr>
<th>millions</th>
<th>hundred thousands</th>
<th>ten thousands</th>
<th>thousands</th>
<th>hundreds</th>
<th>tens</th>
<th>ones</th>
<th>and</th>
<th>tenths</th>
<th>hundredths</th>
<th>thousandths</th>
<th>ten-thousandths</th>
<th>hundred-thousandths</th>
<th>millionths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

a. 16.05 + 2.94

b. 7.421 + 92.55

c. 38.72 − 8.61

d. 64.968 − 51.167

What Is Your Answer?

5. MODELING Describe two real-life examples of when you would need to add and subtract decimals.

6. IN YOUR OWN WORDS How can you add and subtract decimals?
Add.

1. $3.02 + 1.67$
2. $1.4 + 8.68$
3. $11.514 + 4.29$

4. $15.71 + 12.643$
5. $9.562 + 21.764$
6. $15.602 + 2.47$

Subtract.

7. $2.64 - 1.52$
8. $4.023 - 3.146$
9. $7.87 - 5.152$

10. $16.045 - 12.63$
11. $17.1 - 11.457$
12. $5.18 - 2.487$

13. You buy a movie for $19.99 and a set of earphones for $12.49. How much is the bill before taxes?
2.5 Multiplying Decimals
For use with Activity 2.5

Essential Question How can you multiply decimals?

1 ACTIVITY: Multiplying Decimals Using a Rectangle

Work with a partner. Use a rectangle to find the product.

a. 2.7 • 1.3

Arrange base ten blocks to form a rectangle of length 2.7 units and width 1.3 units. Sketch your model.

The area of the rectangle represents the product.

Find the total area represented by each grouping of base ten blocks.

\[
\text{Area} = \quad \text{units}^2 \quad \text{Area} = \quad \text{units}^2
\]

\[
\text{Area} = \quad \text{units}^2 \quad \text{Area} = \quad \text{units}^2
\]

The area of the rectangle is

\[
\text{____} + \text{____} + \text{____} + \text{____} = \text{____} \text{ units}^2.
\]

So, 2.7 • 1.3 = ________.
2.5 Multiplying Decimals (continued)

b. 1.8 • 1.1
c. 4.6 • 1.2
d. 3.2 • 2.4

2 ACTIVITY: Multiplying Decimals Using an Area Model

Work with a partner. Use an area model to find the product. Explain your reasoning.

a. 0.8 • 0.5

Use the 10-by-10 square grid.
Shade 8 rows of the grid to represent 0.8.
Shade 5 columns of the grid to represent 0.5.
Use a different color.
Because ________ hundredths are shaded with both colors, the product is \(\frac{8 \times 5}{100} = \frac{40}{100} = 0.4 \).

So, 0.8 • 0.5 = ________.

b. 0.3 • 0.5
c. 0.7 • 0.6
d. 0.2 • 0.9
2.5 Multiplying Decimals (continued)

3 ACTIVITY: Making a Conjecture

Work with a partner.

a. Find each product.

\[
\begin{align*}
27 \cdot 13 & \\
18 \cdot 11 & \\
46 \cdot 12 & \\
32 \cdot 24 & \\
8 \cdot 5 & \\
3 \cdot 5 & \\
7 \cdot 6 & \\
2 \cdot 9 & \\
\end{align*}
\]

b. How are the numerical expressions in part (a) related to the numerical expressions in Activities 1 and 2? How are the products related?

c. STRUCTURE What conjecture can you make about the relationship between multiplying decimals and multiplying whole numbers?

What Is Your Answer?

4. IN YOUR OWN WORDS How can you multiply decimals?
Multiply. Use estimation to check your answer.

1. 0.5×4
2. 3.8×6
3. 2.1×11
4. 0.8×0.6
5. 0.003×0.09
6. 8.91×1.26

7. You earn $7.80 an hour working as a dog sitter. You work 12.5 hours during the weekend. How much money do you make?

8. You use a microscope to look at bacteria that is 0.0034 millimeter long. The microscope magnifies the bacteria 430 times. How long does the bacteria appear to be when you look at it through the microscope?
2.6 Dividing Decimals

Essential Question How can you use base ten blocks to model decimal division?

1 ACTIVITY: Dividing Decimals

Work with a partner. Use base ten blocks to model the division.

a. 2.4 ÷ 0.6

Begin by modeling 2.4 with base ten blocks. Sketch your model.

How many of each base ten block did you use?

__________ ones __________ tenths __________ hundredths

Next, think of the division problem 2.4 ÷ 0.6 as the question,

“How can you divide 2.4 into groups of 0.6?”

Rearrange the model for 2.4 into groups of 0.6. Sketch your model.

There are ________ groups of 0.6. So, 2.4 ÷ 0.6 = ________.
2.6 Dividing Decimals (continued)

b. 1.8 ÷ 2
c. 3.9 ÷ 3
d. 2.8 ÷ 0.7
e. 3.2 ÷ 0.4

f. Write and solve the division problem represented by the model.

2 ACTIVITY: Dividing Decimals

Work with a partner. Use base ten blocks to model the division.

a. 0.3 ÷ 0.06

Model 0.3. Replace tenths with hundredths. How many 0.06s are in 0.3? Divide hundredths into groups of 0.06.

There are _________ groups of 0.06. So, 0.3 ÷ 0.06 = ________.

b. 0.2 ÷ 0.04
c. 0.6 ÷ 0.01
d. 0.16 ÷ 0.08
e. 0.28 ÷ 0.07
What Is Your Answer?

3. **IN YOUR OWN WORDS** How can you use base ten blocks to model decimal division? Use examples from Activity 1 and Activity 2 as part of your answer.

4. **WRITING** Newton’s poem is about dividing fractions. Write a poem about dividing decimals.

5. Think of your own cartoon about dividing decimals. Draw your cartoon.
2.6 Practice
For use after Lesson 2.6

Divide. Check your answer.

1. $3\overline{)18.6}$
2. $6\overline{)46.8}$
3. $4\overline{)7.6}$
4. $24.5 \div 7$
5. $0.096 \div 8$
6. $15.65 \div 5$
7. $3.1\overline{)17.36}$
8. $6.4\overline{)43.52}$
9. $7.05\overline{)8.46}$
10. $9.24 \div 15.4$
11. $7.06 \div 0.353$
12. $0.015 \div 0.003$

13. It costs $859.32 to have a school dance.
 a. How many tickets must be sold to cover the cost?
 b. How many tickets must be sold to make a $980.68 profit?