College Prep Biology

<u>Required</u>

Sayreville War Memorial High School

5 or 6 Credits

<u>Full Year</u>

Date Curriculum Approved/ Revised: 7/19/16

Table of Contents:	
Statement of Purpose	3
Unit 1: (Matter and Energy Transformations in Ecosystems)4	ŀ
Unit 2: (Interdependent Relationships in Ecosystems)	9
Unit 3: (Human Activity and Climate)1	3
Unit 4: (Human Activity and Biodiversity)1	7
Unit 5 (Cell Specialization and Homeostasis)22	2
Unit 6 (DNA and Inheritance)2	7
Unit 7 (Natural Selection)3	1
Unit 8 (Evolution)3	7

Sayreville Public Schools College Prep Biology 5 or 6 Credits Statement of Purpose

<u>Summary of the Course:</u> The course of study is designed to expose students to the basic foundations of Biology. Biology is an allencompassing term that includes Matter and Energy Transformations in Ecosystems, Interdependent Relationships in Ecosystems, Human Activity, Climate and Biodiversity, Cell Specialization and Homeostasis, DNA and Inheritance, Natural Selection and Evolution.

In order to demonstrate a cohesive and complete implementation plan the following general suggestions are provided:

- The use of various formative assessments are encouraged in order to provide an ongoing method of determining the current level of understanding the students have of the material presented.
- Homework, when assigned should be relevant and reflective of the current teaching taking place in the classroom.
- Organizational strategies should be in place that allow the students the ability to take the information gained in the classroom and put in in terms that are relevant to them.
- Instruction should be differentiated to allow students the best opportunity to learn.
- Assessments should be varied and assess topics of instruction delivered in class.
- Modifications to the curriculum should be included that address students with Individualized Educational Plans (IEP), English Language Learners (ELL), and those requiring other modifications (504 plans).
- Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence.
- Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation.

Unit 1: Matter and Energy Transformations in Ecosystems

Summary of the Unit: In this unit of study, students *construct explanations* for the role of energy in the cycling of matter in organisms and ecosystems. They *apply mathematical concepts* to *develop evidence to support explanations* of the interactions of photosynthesis and cellular respiration, and they will *develop models to communicate these explanations*. Students also understand organism's' interactions with each other and their physical environment and how organisms obtain resources. Students utilize the crosscutting concepts of *matter and energy* and *systems, and system models* to make sense of ecosystem dynamics. Students are expected to use students *construct explanations* for the role of energy in the cycling of matter in organisms and ecosystems. They *apply mathematical concepts* to *develop evidence to support explanations* as they demonstrate their understanding of the disciplinary core ideas.

Enduring Understanding:

- Energy cannot be created or destroyed—it drives the cycling of matter within and between systems.
- Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life process
- Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward to produce growth and release energy in cellular respiration at the higher level.
- The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways.
- Models (e.g., physical, mathematical, computer) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.
- The main way that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis.
- Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, oceans, and geosphere through chemical, physical, geological, and biological processes.

Essential Questions:

Why do astrobiologists look for water on planets and not oxygen when they search for life on other planets?

Why is there no such thing as a food chain?

How can the process of photosynthesis and respiration in a cell impact ALL of Earth's systems?

Summative Assessment and/ or Summative Criteria to demonstrate mastery of the Unit.

Page 4 of 43

Unit 1 Test, Quarter	ly Exam						
Resources: Biology Textbook, NJ Center for Teaching and Learning, other teacher created resources as appropriate.							
Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	NJSLS		
Cycling of Matter	6 days	Construct and revise an explanation for the cycling of matter and flow of energy in aerobic and anaerobic conditions, based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Construct and revise an explanation for the cycling of matter and flow of energy in aerobic and anaerobic conditions, considering that most scientific knowledge is quite durable but is, in principle, subject to change based on new evidence	Biogeochemical Cycles Activity Water Cycle Model	Cycle Diagrams Post Lab questions	HS-LS 2-4, HS-LS 2-5, LA.RL.9-10.1, LA.RL.11-12.2,		

Page 5 of 43

			82		· · · · · · · · · · · · · · · · · · ·
		and/or reinterpretation of			
		existing evidence.			
Flow of Energy	6 days	Support claims for the cycling	Ecological Pyramid	Ecology	HS-LS 2-4, HS-LS 2-5,
Through an		of matter and flow of energy	Activity	Quizzes/Tests	LA.RL.9-10.1,
Ecosystem		among organisms in an			LA.RL.11-12.2
		ecosystem using conceptual	Food Web Mystery	Food Web Model	
		thinking and mathematical	Organism Lab		
		representations of			
		phenomena.	Biomagnification Lab		
		Use a mathematical model of			
		stored energy in biomass to			
		describe the transfer of			
		energy from one trophic level			
		to another and to show how			
		matter and energy are			
		conserved as matter cycles			
		and energy flows through			
		ecosystems			
		Use a mathematical model to			
		describe the conservation of			
		atoms and molecules as they			
		move through an ecosystem.			
		Use proportional reasoning to			
		describe the cycling of matter			
		and flow of energy through an			
		ecosystem			
Photosynthesis and	6 days	Develop a model, based on	Plant	Photosynthesis/	HS-LS 2-4, HS-LS 2-5,
Cellular Respiration		evidence, to illustrate the	Chromatography Lab	Respiration Foldable	LA.RL.9-10.1,
		roles of photosynthesis and			LA.RL.11-12.2
		cellular respiration in the	Muscle Fatigue Lab	Fermentation Lab	
		cycling of carbon among the		Report	

Page 6 of 43

		Concest rrep Bio	logy o or o areans		
		biosphere, atmosphere, hydrosphere, and geosphere, showing the relationships among variables in systems and their components in the natural and designed world. Develop a model, based on evidence, to illustrate the roles of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere at different scales.	Fermentation Lab Photosynthesis Chemistry Model	Photosynthesis/ Respiration Test	
Review and Assess	2 – 3 days	Students will review information gained throughout the unit in preparation for a summative assessment	Review assignment, review game or activity,	Biology summative assessment	HS-LS 2-4, HS-LS 2-5

Suggested Modifications for Special Education, English Language Learners and Gifted Students: Restructure lesson using UDL principals (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA); Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.; Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).; Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).; Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).; Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.; Use project-based science learning to connect science with observable phenomena.; Structure the learning around explaining or solving a social or community-based issue.; Provide ELL students with multiple literacy strategies. ; Collaborate with after-school programs or clubs to extend learning opportunities.

*Consistent with individual plans, when appropriate.

Suggested Technological Innovations/ Use: Google, Google Classroom, Discovery Education, Brain Pop, Amoeba Sisters, TED Ed, Kahoot, Bozeman

Cross Curricular/ 21st Century Connections:

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

Unit 2: Interdependent Relationships in Ecosystems

Summary of the Unit: In this unit of study, students formulate answers to the question "how and why do organisms interact with each other (biotic factors) and their environment (abiotic factors), and what affects these interactions?" Secondary ideas include the interdependent relationships in ecosystems; dynamics of ecosystems; and functioning, resilience, and social interactions, including group behavior. Students use mathematical reasoning and models to make sense of carrying capacity, factors affecting biodiversity and populations, the cycling of matter and flow of energy through systems. The crosscutting concepts of *scale, proportion, and quantity* and *stability and change* are called out as organizing concepts for the disciplinary core ideas. Students are expected to use *mathematical reasoning* and *models* to demonstrate proficiency with the disciplinary core ideas.

Enduring Understanding:

- Ecosystems have carrying capacities, which are limits to the number of organisms and populations they can support. They are dependent on the scale proportion and quantity at which it occurs.
- These limits result from such factors as the availability of living and nonliving resources and from such challenges such as predation, competition, and disease.
- Quantitative analysis can be used to compare and determine relationships among interdependent factors that affect the carrying capacity of ecosystems at different scales.
- A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions.
- Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability.
- If a modest biological or physical disturbance to an ecosystem occurs, it may return to its more or less original status (i.e., the ecosystem) as opposed to becoming a very different ecosystem.

Essential Questions:

When ecologists relocate bears, wolves, or other predators, how do they know that they will survive?

What limits the number and types of different organisms that live in one place?

How can a one or two inch rise in sea level devastate an ecosystem?

Summative Assessment and/ or Summative Criteria to demonstrate mastery of the Unit.

Unit 2 Test, Quarterly Exam

Resources: Biology Textbook, NJ Center for Teaching and Learning, other teacher created resources as appropriate.						
Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	NJSLS	
Carrying Capacity of Ecosystems	6 days	Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. Use quantitative analysis to compare relationships among interdependent factors and represent their effects on the carrying capacity of ecosystems at different scales.	Population Ecology Lab Endangered Species Lab	Post Lab Questions Carrying Capacity Webquest	HS-LS 2-1, HS-LS 2-2, HS-LS 2-6, MA.9- 12.S-IC.B, MA.9-12.S- MD.A	
Biodiversity and Populations in Ecosystems	6 days	Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales. Use the concept of orders of magnitude to represent how factors affecting biodiversity and populations in ecosystems at one scale relate	Population Sampling Size Lab Human Population Growth Activity	Population Growth Graphing and Analysis	HS-LS 2-1, HS-LS 2-2, HS-LS 2-6, MA.9- 12.S-MD.A	

	r			1			
		to those factors at another					
		scale.					
Interactions within	6 days	Evaluate the claims, evidence,	Ecological	Abiotic/Biotic	HS-LS 2-1, HS-LS 2-2,		
Ecosystems		and reasoning that support	Interactions Lab	Ecosystem	HS-LS 2-6, LA.RL.11-		
		the contention that complex		Presentation	12.2		
		interactions in ecosystems	Abiotic/Biotic				
		maintain relatively consistent	Ecosystem Project				
		numbers and types of					
		organisms in stable					
		conditions, but changing					
		conditions may result in a new					
		ecosystem.					
		Construct explanations of how					
		modest biological or physical					
		changes versus extreme					
		changes affect stability and					
		change in ecosystems.					
Review and Assess	2 – 3 days	Students will review	Review assignment,	Biology summative	HS-LS 2-1, HS-LS 2-2,		
		information gained	review game or	assessment	HS-LS 2-6		
		throughout the unit in	activity,				
		preparation for a summative					
		assessment					
Suggested Modificat	Suggested Modifications for Special Education, English Language Learners and Gifted Students: Restructure lesson using UDL						
principals (http://www	.cast.org/our-v	work/about-udl.html#.VXmoXcfD	<u>UA</u>); Structure lessons a	around questions that ar	e authentic, relate to		

Suggested Modifications for Special Education, English Language Learners and Gifted Students: Restructure lesson using UDL principals (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA); Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.; Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).; Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).; Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).; Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.; Use project-based science learning to connect science with observable phenomena.;

Structure the learning around explaining or solving a social or community-based issue.; Provide ELL students with multiple literacy strategies. ; Collaborate with after-school programs or clubs to extend learning opportunities.

*Consistent with individual plans, when appropriate.

Suggested Technological Innovations/ Use: Google, Google Classroom, Discovery Education, Brain Pop, Amoeba Sisters, TED ED, Kahoot, Bozeman

Cross Curricular/ 21st Century Connections:

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

Unit 3: Human Activity and Climate

Summary of the Unit: In this unit of study, students examine factors that have influenced the distribution and development of human society; these factors include climate, natural resource availability, and natural disasters. Students use *computational representations* to analyze how earth systems and their relationships are being modified by human activity. Students also develop an understanding of how human activities affect natural resources and of the interdependence between humans and Earth's systems, which affect the availability of natural resources. Students will apply their engineering capabilities to reduce human impacts on earth systems and improve social and environmental cost–benefit ratios. The crosscutting concepts of *cause and effect, systems and systems models, stability and change*, and *the influence of engineering, technology, and science on society and the natural world* are called out as organizing concepts for the disciplinary core ideas. Students will analyze and interpret data, use mathematical and computational thinking, and construct explanations as they demonstrate understanding of the disciplinary core ideas.

Enduring Understanding:

- Resource vitality has guided the development of human society.
- Natural hazards and other geologic events have shaped the course of human history, significantly altered the sizes of human populations, and have driven human migration.
- Empirical evidence is required to differentiate between cause and correlation and make claims about how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activities.
- Changes in climate can affect population or drive mass migration.
- Current models predict that, although future regional climate changes will be complex and will vary, average global temperatures will continue to rise.
- The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases are added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and the biosphere
- Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.
- Human activities can modify the relationships among Earth systems.
- Although the magnitude of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts.
- Science investigations use diverse methods and do not always use the same set of procedures to obtain data.
- Scientist and engineers can develop technologies that produce less pollution and waste and that preclude ecosystem degradation.

• When evaluating solutions, it is important to take into account a range of constraints, including costs, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts.

Essential Questions:

How are human activities influence the global ecosystem?

What are the relationships among earth's systems and how are those relationships being modified due to human activity? What is the current rate of global or regional climate change and what are the associated future impacts to Earth's systems? How can the impacts of human activities on natural systems be reduced?

Summative Assessment and/ or Summative Criteria to demonstrate mastery of the Unit. Unit 3 Test, Quarterly Exam

	Resources: Biology	Textbook, NJ Center for	Teaching and Learning,	other teacher created	resources as appropriate.
--	---------------------------	-------------------------	------------------------	-----------------------	---------------------------

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	NJSLS
Changes in Climate influenced by Human Activity	5 days	Construct an explanation based on valid and reliable evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. Use empirical evidence to differentiate between how the availability of natural resources, occurrence of natural hazards, and changes	Ecological Footprint Project	Ecological Footprint Presentation	HS-ESS 3-1, HS-ESS 3- 4, HS-ESS 3-5, HS-ESS 3-6, HS-ETS 1-3, LA.RL.11-12.9

			02		
		in climate have influenced			
		human activity.			
Earth Systems	5 days	Use a computational	Carbon Cycle	Carbon Cycle	HS-ESS 3-1, HS-ESS 3-
		representation to illustrate	Graphing	Graphing Analysis	4, HS-ESS 3-5, HS-ESS
		the relationships among Earth			3-6, HS-ETS 1-3,
		systems and how these			MA.9-12.S-MD.A
		relationships are being			
		modified due to human			
		activity.			
		Describe the boundaries of			
		Earth systems.			
		Analyze and describe the			
		inputs and outputs of Earth			
		systems.			
Future Climate	5 days	Analyze geosciences data and	Biogeochemical	Biogeochemical	HS-ESS 3-1, HS-ESS 3-
Change	-	the results from global climate	Cycles Trends	Cycles Trends Model	4, HS-ESS 3-5, HS-ESS
-		models to make an evidence-	Activity		3-6, HS-ETS 1-3,
		based forecast of the current		Post Lab questions	MA.9-12.S-MD.A
		rate of global or regional	Future		
		climate change and associated	Energy/Climate Lab		
		future impacts to Earth			
		systems.			
		Quantify and model change			
		and rates of change in			
		geosciences data and rates of			
		global or regional climate			
		change and associated			
		impacts to Earth systems.			
Human Activities on	5 days	Evaluate or refine a	Alternative Energy	Alternative Energy	HS-ESS 3-1, HS-ESS 3-
Natural Systems	-	technological solution that	Research	Proposal	4, HS-ESS 3-5, HS-ESS
		reduces impacts of human			

Page 15 of 43

		activities on natural systems			3-6, HS-ETS 1-
		based on scientific knowledge			3,LA.W.11-12.
		and student-generated			
		sources of evidence; prioritize			
		criteria and tradeoff			
		considerations.			
Review and Assess	2 – 3 days	Students will review	Review assignment,	Biology summative	HS-ESS 3-1, HS-ESS 3-
		information gained	review game or	assessment	4, HS-ESS 3-5, HS-ESS
		throughout the unit in	activity,		3-6, HS-ETS 1-3
		preparation for a summative			
		assessment			

Suggested Modifications for Special Education, English Language Learners and Gifted Students: Restructure lesson using UDL principals (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA); Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.; Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).; Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).; Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).; Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.; Use project-based science learning to connect science with observable phenomena.; Structure the learning around explaining or solving a social or community-based issue.; Provide ELL students with multiple literacy strategies. ; Collaborate with after-school programs or clubs to extend learning opportunities.

*Consistent with individual plans, when appropriate.

Suggested Technological Innovations/ Use: Google, Google Classroom, Discovery Education, Brain Pop, Amoeba Sisters, TED Ed, Kahoot, Bozeman

Cross Curricular/ 21st Century Connections:

Page 16 of 43

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

Unit 4: Human Activity and Biodiversity

Summary of the Unit: In this unit of study, *mathematical models* provide support for students' conceptual understanding of systems and students' ability to *design, evaluate, and refine solutions* for reducing the impact of human activities on the environment and maintaining biodiversity. Students create or revise a simulation to test solutions for mitigating adverse impacts of human activity on biodiversity. Crosscutting concepts of *systems and system models* play a central role in students' understanding of science and engineering practices and core ideas of ecosystems. Mathematical models also provide support for students' conceptual understanding of systems and their ability to develop design solutions for reducing the impact of human activities on the environment and maintaining biodiversity.

Enduring Understanding:

- The sustainability of human societies and the biodiversity that supports them require responsible management of natural resources.
- Change and rates of change can be quantified and modeled over very short or very long periods. Some system changes are irreversible.
- New technologies can have deep impacts on society and the environment including some that are not anticipated.
- Anthropogenic changes (induced by human activity) in the environment— including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosystem and threaten the survival of some species.
- Biodiversity is increased by the formation of new species (speciation) and decreased by the loss of species (extinction).
- Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Sustaining biodiversity so that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth.
- When evaluating solutions, it is important to take into account a range of constraints—including costs, safety, reliability, and aesthetics—and to consider social, cultural, and environmental impacts.
- Changes in the physical environment, whether naturally occurring or human induced, have contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes the extinction—of some species.
- Both physical models and computers can be used in various ways to aid the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test ways of solving a problem or to see which one is most efficient or economical, and in making a persuasive presentation to a client about how a given design will meet his or her needs.

Essential Questions:

How might we change habits if we replaced the word "environment" with the word "life support system"? Does reducing human impacts on our global life support system require social engineering or mechanical engineering?

Is the damage done to the global life support system permanent?

Summative Assessment and/ or Summative Criteria to demonstrate mastery of the Unit.

Unit 4 Exam, Quarterly Exam

Resources: Biology Textbook, NJ Center for Teaching and Learning, other teacher created resources as appropriate.,

Topic/ Selection	Suggested	General Objectives	Instructional	Suggested	NJSLS
	Timeline		Activities	Benchmarks/	
	per topic			Assessments	
Sustainability of	6 days	Create a computational	Demographic	Post Lab questions	HS-LS 2-7, HS-ESS 3-
Human Populations		simulation to illustrate the	Transition Lab		3, HS-LS 4-6, HS-ETS
		relationships among			1-1, HS-ETS 1-2, HS-
		management of natural	Calculating		ETS 1-3, HS-ETS 1-4,
		resources, the sustainability of	Population Growth		LA.W.11-12, MA.9-
		human populations, and	Rate Activity		12.S-ID.A
		biodiversity.			
		Quantify and model change	Tale of Two		
		and rates of change in the	Countries Activity		
		relationships among			
		management of natural			
		resources, the sustainability of			
		human populations, and			
		biodiversity.			
Impacts of Human	6 days	Design, evaluate, and refine a	Environmental	Environmental	HS-LS 2-7, HS-ESS 3-
Activities on		solution for reducing the	Impacts Project	Impacts Land Plot	3, HS-LS 4-6, HS-ETS
Environment		impacts of human activities on		Proposal	1-1, HS-ETS 1-2, HS-
		the environment and			ETS 1-3, HS-ETS 1-4,
		biodiversity based on			LA.W.11-12.2
		scientific knowledge, student-			

Page 19 of 43

		generated sources of			
		evidence, prioritized criteria.			
		and tradeoff considerations.			
		Construct explanations for			
		how the environment and			
		biodiversity change and stay			
		the same when affected by			
		, human activity.			
		Evaluate a solution for			
		reducing the impacts of			
		human activities on the			
		environment and biodiversity			
		based on scientific knowledge,			
		student-generated sources of			
		evidence, prioritized criteria,			
		and tradeoff considerations.			
		Analyze costs and benefits of			
		a solution for reducing the			
		impacts of human activities on			
		the environment and			
		biodiversity based on			
		scientific knowledge, student-			
		generated sources of			
		evidence, prioritized criteria,			
		and tradeoff considerations.			
Human Impact on	6 days	Create or revise a simulation	Ecological Issues	Ecological Issues	HS-LS 2-7, HS-ESS 3-
Biodiversity		based on scientific knowledge,	Project	Presentation	3, HS-LS 4-6, HS-ETS
		student-generated sources of			1-1, HS-ETS 1-2, HS-
		evidence, prioritized criteria,			ETS 1-3, HS-ETS 1-4,
		and tradeoff considerations to			LA.W.11-12.1,
		test a solution to mitigate			LA.W.11-12.2

Page 20 of 43

adverse impacts of human activity on biodiversity. Use empirical evidence to make claims about the impacts of human activity on biodiversity. Break down the criteria for the design of a simulation to test a solution for mitigating adverse impacts of human activity on biodiversity into simpler ones that can be approached systematically based on consideration of trade-offs. Design a solution for a proposed problem related to threatened or endangered species or to genetic variation of organisms for multiple species. Analyze costs and benefits of a solution to mitigate adverse impacts of human activity on biodiversity. **Review and Assess** Students will review Review assignment, **Biology summative** 2 – 3 days HS-LS 2-7, HS-ESS 3information gained review game or 3, HS-LS 4-6, HS-ETS assessment throughout the unit in 1-1, HS-ETS 1-2, HSactivity, preparation for a summative ETS 1-3, HS-ETS 1-4 assessment Suggested Modifications for Special Education, English Language Learners and Gifted Students: Restructure lesson using UDL principals (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD UA); Structure lessons around questions that are authentic, relate to

Sayreville Public Schools College Prep Biology 5 or 6 Credits

Page 21 of 43

students' interests, social/family background and knowledge of their community.; Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).; Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).; Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).; Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.; Use project-based science learning to connect science with observable phenomena.; Structure the learning around explaining or solving a social or community-based issue.; Provide ELL students with multiple literacy strategies. ; Collaborate with after-school programs or clubs to extend learning opportunities.

*Consistent with individual plans, when appropriate.

Suggested Technological Innovations/ Use: Google, Google Classroom, Discovery Education, Brain Pop, Amoeba Sisters, TED Ed, Kahoot, Bozeman,

Cross Curricular/ 21st Century Connections:

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

Unit 5: Cell Specialization and Homeostasis

Summary of the Unit: Students formulate an answer to the question "How do the structures of organisms enable life's functions?" Students investigate explanations for the structure and functions of cells as the basic unit of life, of hierarchical organization of interacting organ systems, and of the role of specialized cells for maintenance and growth. The crosscutting concepts of structure and function, matter and energy, and systems and system models are called out as organizing concepts for the disciplinary core ideas. Students use critical reading, modeling, and conducting investigations. Students also use the science and engineering practices to demonstrate understanding of the disciplinary core ideas.

Enduring Understanding:

- Systems of specialized cells within organisms help them perform the essential functions of life.
- All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells.
- Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level.
- Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows— within and between systems at different scales.
- Feedback mechanisms maintain a living system's internal conditions within certain limits, and they mediate behaviors, allowing the system to remain alive and functional even as external conditions change within some range. Feedback mechanisms can encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system.
- In multicellular organisms, individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow.
- The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells.
- Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism.

Essential Questions:

How does the structure of DNA determine the structure of proteins, and what is the function of proteins?

What do you mean they say that people are made of a system of systems?

How do feedback mechanisms maintain homeostasis?

Why aren't all elephants the same size?

Summative Assessment and/ or Summative Criteria to demonstrate mastery of the Unit. Unit 5 Test, Quarterly Exam

Resources: Biology Textbook, NJ Center for Teaching and Learning, other teacher created resources as appropriate.,						
Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	NJSLS	
DNA	5 days	Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells. Construct an explanation, based on the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future, for how the structure of DNA	DNA Extraction Lab Mutation Lab Protein Synthesis Lab Disorder Detectives/ Karyotype Lab Transcription and Translation Activity	Assessments DNA/RNA Base Pairing Activity	LS1.A, HS-LS 1-1, HS- LS 1-2, HS-LS 1-3, HS- LS 1-4	
		determines the structure of proteins, which carry out the essential functions of life				

1-1, HS-
1-3, HS-
11-12.1
1-1, HS-
1-1, HS- 1-3, HS-
1-1, HS- 1-3, HS- 11-12.1
-

		In the planning of the investigation, decide on the types, amount, and accuracy of the data needed to produce reliable measurements, consider limitations on the precision of the data, and refine the			
Cell Division and	5 days	design accordingly.	Cell Cycle Onion Root	Cell Cycle Foldable	
Differentiation	5 days	ose a model based on evidence to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms. Use a model to illustrate the role of cellular division and differentiation in terms of energy, matter, and information flows within and between systems of cells/organisms.	Microscope Lab		LS1.A, HS-LS 1-1, HS- LS 1-2, HS-LS 1-3, HS- LS 1-4, LA.RL.11-12.4
Review and Assess	2 – 3 days	Students will review information gained throughout the unit in preparation for a summative assessment	Review assignment, review game or activity,	Biology summative assessment	LS1.A, HS-LS 1-1, HS- LS 1-2, HS-LS 1-3, HS- LS 1-4
Suggested Modificat	ions for Specia	al Education, English Language	Learners and Gifted S	Students: Restructure	lesson using UDL
principals (<u>http://www</u>	.cast.org/our-w	ork/about-udl.html#.VXmoXcfD_	<u>UA</u>); Structure lessons a	round questions that are	e authentic, relate to
students' interests, social/family background and knowledge of their community.; Provide students with multiple choices for how they can					

represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables,

multimedia, modeling).; Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).; Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).; Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.; Use project-based science learning to connect science with observable phenomena.; Structure the learning around explaining or solving a social or community-based issue.; Provide ELL students with multiple literacy strategies. ; Collaborate with after-school programs or clubs to extend learning opportunities.

*Consistent with individual plans, when appropriate.

Suggested Technological Innovations/ Use: Google, Google Classroom, Discovery Education, Brain Pop, Amoeba Sisters, TED Ed, Kahoot, Bozeman

Cross Curricular/ 21st Century Connections:

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

Unit 6: DNA and Inheritance

Summary of the Unit: Students analyze data develop models to make sense of the relationship between DNA and chromosomes in the process of cellular division, which passes traits from one generation to the next. Students determine why individuals of the same species vary in how they look, function, and behave. Students develop conceptual models of the role of DNA in the unity of life on Earth and use statistical models to explain the importance of variation within populations for the survival and evolution of species. Ethical issues related to genetic modification of organisms and the nature of science are described. Students explain the mechanisms of genetic inheritance and describe the environmental and genetic causes of gene mutation and the alteration of gene expressions. The crosscutting concepts of structure and function, patterns, and cause and effect are used as organizing concepts for the disciplinary core ideas. Students also use the science and engineering practices to demonstrate understanding of the disciplinary core ideas.

Enduring Understanding:

- All cells contain genetic information in the form of DNA molecules.
- Genes are regions in the DNA that contain the instructions that code for the formation of proteins.
- Each chromosome consists of a single DNA molecule, and each gene on the chromosome is a particular segment of that DNA.
- The instructions for forming species' characteristics are carried in the DNA.
- All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways.
- In sexual reproduction, chromosomes can sometimes swap sections during the process of meiosis (cell division), thereby creating new genetic combinations and thus more genetic variation.
- Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation.
- Environmental factors can also cause mutations in genes, and viable mutations are inherited.
- Environmental factors also affect expression of traits, and hence affect the probability of occurrence of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors.
- Algebraic thinking is used to examine scientific data and predict the distribution of traits in a population as they relate to the genetic and environmental factors (e.g., linear growth vs. exponential growth).
- Technological advances have influenced the progress of science, and science has influenced advances in technology.
- Science and engineering are influenced by society, and society is influenced by science and engineering.

Essential Questions:

Why can't two roses ever be identical?

How does inheritable genetic variation occur?

Can a zoologist predict the distribution of expressed traits in a population?

Summative Assessment and/ or Summative Criteria to demonstrate mastery of the Unit.

Unit 6 Test, Quarterly Exam

Resources: Biology Textbook, NJ Center for Teaching and Learning, other teacher created resources as appropriate.,

Topic/ Selection	Suggested	General Objectives	Instructional	Suggested	NJSLS
	Timeline		Activities	Benchmarks/	
	per topic			Assessments	
DNA and	6 days	Ask questions that arise from	Penny 50/ 50	Probability Questions	HS-LS 1-4 , LS 1.B,
Chromosomes		examining models or a theory	Chances Lab		HS-LS 3-1, LS 3.B, HS-
		to clarify relationships about		Punnett Square Test	LS 3-2, MA.9-12.S-
		the role of DNA and	Punnett Square Lab		MD.A
		chromosomes in coding the			
		instructions for characteristic	Genes and		
		traits passed from parent to	Chromosomes Lab		
		offspring.			
		Use empirical evidence to			
		differentiate between cause			
		and correlation and make			
		claims about the role of DNA			
		and chromosomes in coding			
		the instructions for			
		characteristics passed from			
		parents to offspring.			
Genetic Variations	6 days	Make and defend a claim	Heredity Lab	Post Lab questions	HS-LS 1-4 , LS 1.B,
		based on evidence that		and analysis	HS-LS 3-1, LS 3.B, HS-
		inheritable genetic variations	Dragon Genetics Lab		LS 3-2
		may result from new genetic			
		combinations through			

Page 29 of 43

		meiosis, viable errors			
		occurring during replication,			
		and/or mutations caused by			
		environmental factors.			
		Use data to support			
		arguments for the ways			
		inheritable genetic variation			
		occurs.			
		Use empirical evidence to			
		differentiate between cause			
		and correlation and make			
		claims about the ways			
		inheritable genetic variation			
		occurs.			
Expression of Traits	6 days	Apply concepts of statistics	Inheritance of Traits	Offspring Drawing	HS-LS 1-4 , LS 1.B,
		and probability (including	Lab		HS-LS 3-1, LS 3.B, HS-
		determining function fits to		Create your Pedigree	LS 3-2
		data, slope, intercepts, and	Pedigree Investigator	Activity	
		correlation coefficient for			
		linear fits) to explain the			
		variation and distribution of			
		expressed traits in a			
		population.			
		Use mathematics to			
		describe the probability of			
		traits as it relates to genetic			
		and environmental factors in			
		the expression of traits.			
		Use algebraic thinking to			
		examine scientific data on the			
		variation and distribution of			

		traits in a population and predict the effect of a change in probability of traits as it relates to genetic and environmental factors.			
Review and Assess	2 – 3 days	Students will review information gained throughout the unit in preparation for a summative assessment	Review assignment, review game or activity,	Biology summative assessment	HS-LS 1-4 , LS 1.B, HS-LS 3-1, LS 3.B, HS- LS 3-2

Suggested Modifications for Special Education, English Language Learners and Gifted Students: Restructure lesson using UDL principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>); Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.; Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).; Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).; Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).; Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.; Use project-based science learning to connect science with observable phenomena.; Structure the learning around explaining or solving a social or community-based issue.; Provide ELL students with multiple literacy strategies. ; Collaborate with after-school programs or clubs to extend learning opportunities.

*Consistent with individual plans, when appropriate.

Suggested Technological Innovations/ Use: Google, Google Classroom, Discovery Education, Brain Pop, Amoeba Sisters, TED Ed, Kahoot, Bozeman

Cross Curricular/ 21st Century Connections:

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

Unit 7: Natural Selection

Summary of the Unit: Students *constructing explanations* and *designing solutions, analyzing and interpreting data,* and *engaging in argument from evidence investigate* to make sense of the relationship between the environment and natural selection. Students also develop an understanding of the factors causing natural selection of species over time. They also demonstrate and understandings of how multiple lines of evidence contribute to the strength of scientific theories of natural selection. The crosscutting concepts of *patterns* and *cause and effect* serve as a organizing concepts for the disciplinary core ideas. Students also use the science and engineering practices to demonstrate understanding of the disciplinary core ideas.

Enduring Understanding:

- Natural selection leads to adaptation, that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not.
- Empirical evidence is required to differentiate between cause and correlation and make claims about how specific biotic and abiotic differences in ecosystems contribute to change in gene frequency over time, leading to adaptation of populations.
- Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information—that is, trait variation—that leads to differences in performance among individuals.
- The traits that positively affect survival are more likely to be reproduced, and thus are more common in the population. Adaptation also means that the distribution of traits in a population can change when conditions change.
- Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.
- Changes in the physical environment, whether naturally occurring or human induced, have contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline, and sometimes the extinction, of some species.
- Species become extinct because they can no longer survive and reproduce in their altered environment. If members cannot adjust to change that is too fast or drastic, the opportunity for the species' evolution is lost.
- Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives.

Essential Questions:

How does natural selection lead to adaptations of populations?

Why is it so important to take all of the antibiotics in a prescription if I feel better?

How are species affected by changing environmental conditions?

Why do some species live in groups and others are solitary?

Summative Assessment and/ or Summative Criteria to demonstrate mastery of the Unit.

Unit 7 Test, Quarterly Exam

Resources: Biology Textbook, NJ Center for Teaching and Learning, other teacher created resources as appropriate.,

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	NJSLS
Natural Selection	5 days	Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review), and on the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future, for how natural selection leads to adaptation of populations. Use data to differentiate between cause and correlation and to make	Peppered Moth Simulation	Peppered Moth Graphing	LS 4.C, HS- LS 2-8, HS-LS 4-3, HS-LS 4-4, HS-LS 4-5, MA.9- 12.S-MD.A.1

		claims about how specific biotic and abiotic differences in ecosystems contribute to change in gene frequency over time, leading to adaptation of populations.			
Advantageous heritable trait increase in proportion to Organisms	5 days	Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. Analyze shifts in numerical distribution of traits and, using these shifts as evidence, support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. Observe patterns at each of the scales at which a system is studied to provide evidence for causality in explanations that organisms with an advantageous heritable trait	Human Hand Adaptation Lab	Post Lab questions	LS 4.C, HS- LS 2-8, HS-LS 4-3, HS-LS 4-4, HS-LS 4-5

Page 35 of 43

		tend to increase in proportion			
		to organisms lacking this trait.			
Environmental	5 days	Evaluate the evidence	Who Wants to Live a	Who Wants to Live a	LS 4.C, HS- LS 2-8,
Changes affect		supporting claims that	Million Years Activity	Million Years Quiz	HS-LS 4-3, HS-LS 4-4,
Evolution		changes in environmental			HS-LS 4-5
		conditions may result in: (1)			
		increases in the number of			
		individuals of some species,			
		(2) the emergence of new			
		species over time, and (3) the			
		extinction of other species.			
		Determine cause-and-effect			
		relationships for how changes			
		to the environment affect			
		distribution or disappearance			
		of traits in species.			
		Use empirical evidence to			
		differentiate between cause			
		and correlation and to make			
		claims that changes in			
		environmental conditions			
		may result in: (1) increases in			
		the number of individuals of			
		some species, (2) the			
		emergence of new species			
		over time, and (3) the			
		extinction of other species.			
Group or individual	5 days	Evaluate the evidence for	Beak Lab	Graphing and	LS 4.C, HS- LS 2-8,
Behavior		the role of group behavior on		analysis of group vs.	HS-LS 4-3, HS-LS 4-4,
		individual and species'	Survival of the Fittest	individual behavior	HS-LS 4-5, MA.9-
			Lab		12.S-MD.A.1

Page 36 of 43

			07			
		chances to survive and				
		reproduce.				
		Distinguish between group				
		and individual behavior.				
		Identify evidence supporting				
		the outcome of group				
		behavior.				
		Develop logical and				
		reasonable arguments based				
		on evidence to evaluate the				
		role of group behavior on				
		individual and species'				
		chances to survive and				
		reproduce.				
		Use empirical evidence to				
		differentiate between cause				
		and correlation and to make				
		claims about the role of group				
		behavior on individual and				
		species' chances to survive				
		and reproduce.				
Review and Assess	2 – 3 days	Students will review	Review assignment,	Biology summative	LS 4.C, HS- LS 2-8,	
		information gained	review game or	assessment	HS-LS 4-3, HS-LS 4-4,	
		throughout the unit in	activity,		HS-LS 4-5	
		preparation for a summative				
		assessment				
Suggested Modificat	ions for Specia	al Education, English Language	e Learners and Gifted S	Students: Restructure	lesson using UDL	
principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>); Structure lessons around questions that are authentic, relate to						
students' interests, social/family background and knowledge of their community.; Provide students with multiple choices for how they can						
represent their unders	tandings (e.g. m	nultisensory techniques-auditory/	visual aids; pictures, illus	strations, graphs, charts,	data tables,	
multimedia, modeling).; Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool						

such as SKYPE, experts from the community helping with a project, journal articles, and biographies).; Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).; Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.; Use project-based science learning to connect science with observable phenomena.; Structure the learning around explaining or solving a social or community-based issue.; Provide ELL students with multiple literacy strategies. ; Collaborate with after-school programs or clubs to extend learning opportunities.

*Consistent with individual plans, when appropriate.

Suggested Technological Innovations/ Use: Google, Google Classroom, Discovery Education, Brain Pop, Amoeba Sisters, TED Ed, Kahoot, Bozeman

Cross Curricular/ 21st Century Connections:

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

Unit 8: Evolution

Summary of the Unit: Students construct explanations for the processes of natural selection and evolution and then communicate how multiple lines of evidence support these explanations. Students evaluate evidence of the conditions that may result in new species and understand the role of genetic variation in natural selection. Additionally, students can apply concepts of probability to explain trends in population as those trends relate to advantageous heritable traits in a specific environment. Students demonstrate an understanding of these concepts by obtaining, evaluating, and communicating information and constructing explanations and designing solutions. The crosscutting concepts of patterns and cause and effect support the development of a deeper understanding.

Enduring Understanding:

- A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment, and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.
- Genetic information provides evidence of evolution. DNA sequences vary among species, but there are many overlaps; in fact, the ongoing branching that produces multiple lines of descent can be inferred by comparing the DNA sequences of different organisms. Such information is also derivable from the similarities and differences in amino acid sequences and from anatomical and embryological evidence.
- Different patterns in multiple lines of empirical evidence may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of common ancestry and biological evolution.
- Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information— that is, trait variation—that leads to differences in performance among individuals.
- Evolution is a consequence of the interaction of four factors: (1) the potential for a species to increase in number, (2) the genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for an environment's limited supply of the resources that individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those organisms that are better able to survive and reproduce in that environment.
- Empirical evidence is required to differentiate between cause and correlation and make claims about the process of evolution.

Essential Questions:

How can someone prove that birds and dinosaurs are related? What is the relationship between natural selection and evolution?

Summative Assessment and/ or Summative Criteria to demonstrate mastery of the Unit.

Unit 8 Test, Quarterly Exam

Resources: Biology Textbook, NJ Center for Teaching and Learning, other teacher created resources as appropriate.,

Topic/ Selection	Suggested	General Objectives	Instructional	Suggested	NJSLS
	Timeline		Activities	Benchmarks/	
	per topic			Assessments	
Biological Evolution	10 days	Communicate scientific	Bone of Contention	Bone of Contention	LS 4.A, HS-LS 4-1, HS-
		information in multiple forms	Lab	Assessment	LS 4-2
		that common ancestry and			
		biological evolution are	Sex and the Single		
		supported by multiple lines of	Guppy Lab		
		empirical evidence.			
		Understand the role each line			
		of evidence has relating to			
		common ancestry and			
		biological evolution.			
		Observe patterns in multiple			
		lines of empirical evidence at			
		different scales and provide			
		evidence for causality in			
		explanations of common			
		ancestry and biological			
		evolution.			
Theories and Laws	10 days	Construct an explanation,	Homologous,	Evolution Test	LS 4.A, HS-LS 4-1, HS-
of Natural World		based on valid and reliable	Analogous, and		LS 4-2
		evidence obtained from a	Vestigial Structures		
		variety of sources (including	Activity		
		students' own investigations,			
		models, theories, simulations,			
		peer review) and the			

Page 40 of 43

assumption that theories a	d	
laws that describe the natu	al	
world operate today as the	,	
did in the past and will		
continue to do so in the		
future, that the process of		
evolution primarily results		
from four factors: (1) the		
potential for a species to		
increase in number, (2) the		
heritable genetic variation of	f	
individuals in a species due	to	
mutation and sexual		
reproduction, (3) competiti	on	
for limited resources, and (.)	
the proliferation of those		
organisms that are better		
able to survive and reprodu	ce	
in the environment.		
Use empirical evidence to		
explain the influences of: (1		
the potential for a species t		
increase in number, (2) the		
heritable genetic variation of	f	
individuals in a species due	to	
mutation and sexual		
reproduction, (3) competiti	on	
for limited resources, and (.)	
the proliferation of those		
organisms that are better		
able to survive and reprodu	ce	

		in the environment, on number of organisms, behaviors, morphology, or physiology in terms of ability to compete for limited resources and subsequent survival of individuals and adaptation of species.			
Review and Assess	2 – 3 days	Students will review information gained throughout the unit in preparation for a summative assessment	Review assignment, review game or activity,	Biology summative assessment	LS 4.A, HS-LS 4-1, HS- LS 4-2

Suggested Modifications for Special Education, English Language Learners and Gifted Students: Restructure lesson using UDL principals (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA); Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.; Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).; Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).; Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).; Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.; Use project-based science learning to connect science with observable phenomena.; Structure the learning around explaining or solving a social or community-based issue.; Provide ELL students with multiple literacy strategies. ; Collaborate with after-school programs or clubs to extend learning opportunities.

*Consistent with individual plans, when appropriate.

Suggested Technological Innovations/ Use: Google, Google Classroom, Discovery Education, Brain Pop, Amoeba Sisters, TED Ed, Kahoot, Bozeman

Cross Curricular/ 21st Century Connections:

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.