Physics 11 SAYREVILLE WAR MEMORIAL HIGH SCHOOL <u>6 CREDITS</u>

Full Year

Date Curriculum Approved/ Revised: _____

Table of Contents

Unit 1: Mathematical Manipulation and Kinematics Unit 2: Dynamics Unit 3: Uniform Circular Motion Unit 4: Universal Gravitation Unit 5: Energy Unit 6: Momentum Unit 7: Fluids Unit 7: Fluids Unit 8: Simple Harmonics Unit 9: Waves and Sound Unit 10: Electromagnetic Waves Unit 11: Electricity and Circuits Unit 12: Magnetism

Summary of the Course: Physics 11 also known as and referred to as CP Physics is an introductory physics course designed to introduce students to various topics typically covered in a college physics course but taught in a high school lab format. The course is focused around a fundamental understanding of the principles of high school physics. Students will be exposed to and learn about motion, forces, energy, matter, waves and other physical phenomena typical found in the world. Success in this course requires students to have a mathematical foundation in algebra and geometry. All learning styles are addressed through instructional methods and assessments that incorporate scientific reading, writing, and computation. The basic format of the course is based on principles found through the New Jersey Center for Teaching and Learning.

In order to demonstrate a cohesive and complete implementation plan the following general suggestions are provided:

- The use of various formative assessments are encouraged in order to provide an ongoing method of determining the current level of understanding the students have of the material presented.
- Homework, when assigned should be relevant and reflective of the current teaching that is taking place in the classroom.
- Organizational strategies should be in place that allows the students the ability to take the information gained in the classroom and put in in terms that are relevant to them.
- Instruction should be differentiated to allow students the best opportunity to learn.
- Assessments should be varied and assess topics of instruction delivered in class.
- Modifications to the curriculum should be included that address students with Individualized Educational Plans (IEP), English Language Learners (ELL), and those requiring other modifications (504 plans).

As the teachers are working on the curriculum units in OnCourse, please remember that they should include the following as separate documents in the Curriculum Units folder:

- Title PageTable of Contents (List of the Units does not need page numbers)
- Statement of Purpose
 Summary of Course

Unit 1: Kinematics

Content Area:	Science
Course(s):	Physics(6)
Time Period:	1st Marking Period
Length:	25 days
Status:	Published

Unit 1: Kinematics

Summary of the Unit

This unit of study is devoted to both mathematical competency as well as knowledge of relationships among motion, vectors, velocity and acceleration. Solutions to algebraic equations as well as manipulations in Algebra 1 are important pre-requisite skills needed to be successful in physics. Additionally, students will be exposed to the topics of velocity and acceleration as they apply to motion. By the end of this unit, students will be able to solve quantitative problems specifically by first writing out all variables present, determining the appropriate equation to use, solving the equation for the variable needed, inserting numbers into the equation, and finally performing calculations with a scientific calculator, all invaluable skills necessary for success in this course.

Enduring Understandings

- The principles of kinematics can describe the motion of all objects
- An object's motion in one dimension can be expressed and analyzed using multiple representations.
- Motion is relative to its observer
- The acceleration of an object is directly related to its position and velocity, therefore, objects with a constant acceleration along a plane result in either a positive or negative slope when graphed on a velocity-time graph.

Essential Questions

- How are vectors used to analyze motion?
- What are the differences between speed and velocity and how are each applied to real life situations?
- What are the relationships between position, velocity, and acceleration?

Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: http://ngss.nsta.org/Classroom-Resources.aspx
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulationshttps://phet.colorado.edu/

Science NetLinks: http://www.aaas.org/program/science-netlinks

Topic/ Selection	Suggested Timeline per	General Objectives	Instructional Activities	Suggested Benchmarks/	New Jersey Student
	τορις			Assessments	Learning Standards
Algebra Review	5 days	SWBAT manipulate and solve algebraic expressions SWBAT evaluate and solve radical expressions	Students will review and complete varied examples of algebraic equations, manipulation of algebraic equations, and evaluation of	Teacher created algebra review. Be sure to include review in algebraic manipulation.	MP.2 MP.4 HSA- CED.A.4

Unit Plan with Associated Standards Chart

			radical	solutions to	
			expressions	radical	
				expressions,	
				and solutions	
				to algebraic	
				equations.	
Speed,	2 days	SWBAT solve	Introduce speed	Problem	MP.2
Distance and		for speed,	equation:	solving	
Time		distance, and		practice –	MP.4
		time through	Guided and	class work	
		manipulation	individual	and	
		of the speed	practice –	homework	CED.A.4
		equation,	problem solving		
		SWBAT	Introduce	Average	
		calculate	average speed	speed quiz	
		average speed	equation:		
		average speed,			
		,			
		and	Guided and		
		differentiate it	individual		
		from	practice –		
		instantaneous	problem solving		
		speed.	and utilization		
Frames of	2 day	SWBAT	Use practical	Problem	MP.2
Reference,		describe	examples of	solving	
Position,		motion in	relative motion	practice –	MP.4
Displacement		terms of frame	to teach frame	class work	
and Velocity		of reference,	of reference		HSA-
		displacement,			CED.A.4
		time, and	Guided and		
		velocity.	individual		
			practice –		
		SWBAT	calculating		
		calculate the	distance and		
		aisplacement	displacement by		
		of an object	drawing		
		uaveiing at a	ulagrams		
		KNOWN	Speed vs		
		velocity for a	velocity		
		specific time	discussion		
		miervar.			
		SWBAT	Guided and		
		differentiate	individual		
		between speed	practice –		

		and velocity ,	velocity calculations		
		and calculate each.			
Quiz	1 day	TSW apply their knowledge of non- accelerated kinematics to complete a quiz.	Administer quiz	Quiz	MP.2 MP.4 HSA- CED.A.4
Motion with a constant acceleration	3 days	SWBAT describe motion with a changing velocity SWBAT apply and manipulate kinematic equation(s) to calculate distance, time, and/or velocity under conditions of constant acceleration	Describe and demonstrate accelerated motion Introduce equation: Guided and individual practice – problem solving Bowling Ball Lab	Problem solving – class work and homework Bowling Ball Lab data analysis (algebraic and graphical) and conclusion	MP.2 MP.4 HSA- CED.A.4
Free Fall	2 day	SWBAT relate the motion of a freely falling body to motion with constant acceleration SWBAT calculate velocity and	Demonstrate free fall Guided and individual practice – free fall calculations	Problem solving – class work and/or homework First Kinematics Equation Quiz	MP.2 MP.4 HSA- CED.A.4

		time of a free- falling object			
Second Kinematics Equation: Position vs. Time	3 days	SWBAT appropriately utilize the second kinematics equation, , to solve for associated quantities. SWBAT construct and interpret graphs of position vs. time	Introduce equation: Graph position vs. time Stomp Rocket Lab	Problem solving – second kinematics equation homework and/or classwork Stomp Rocket Lab Analysis and Conclusion Second Kinematics Equation Quiz	MP.2 MP.4 HSA- CED.A.4
Third Kinematics Equation	4 days	SWBAT appropriately utilize the third kinematics equation, , to solve for associated variables SWBAT compare and construct graphical representations of accelerated motion and non- accelerated motions	Introduce equation: Problem solving – guided and individual/small group practice Graphing Practice Hopper Lab	Problem Solving – Third Kinematics Equation homework and/or classwork Graphing classwork Hopper Lab analysis and conclusion Third Kinematics Law Quiz	MP.2 MP.4 HSA- CED.A.4
Review and Assessment	3 days	TSW apply their knowledge of kinematics to	Review Concepts and problems formally and	Practical Problem Solving	MP.2 MP.4

complete a review and then a subsequent	with games Administer Assessment	review Kinematics Assessment	HSA- CED.A.4
formal			
assessment			

9-12.HS-PS2-2.5.1

Use mathematical representations of phenomena to describe explanations.

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.

Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to

discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Mathematics

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.

- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 2: Dynamics

Content Area:	Science
Course(s):	Physics(6)
Time Period:	1st Marking Period
Length:	22 Days
Status:	Published

Summary of the Unit

This unit introduces students to the concept of inertia used to determine the motion of an object experiencing a net force and a zero net force. Additionally, Newton's Laws of Motion will be introduced and reviewed in order to develop the concept of motion and reaction. Students will be exposed to and expected to draw and interpret free-body diagrams, solve relevant equations and use these results to solve relevant problems. The concept of friction will also be introduced and students will be expected to not only find the friction force but apply this concept to real life situations. Students will learn how to identify the following forces and illustrate their relative magnitude and directions: Applied Force, Normal Force, Weight (Gravitational Force), Apparent Weight, Tension, and Friction (Kinetic and Static).

Enduring Understandings

- Forces are detected by their influence on the motion of an object.
- A force exerted on an object is always due to the interaction of that object with another object.
- If one object exerts a force on a second object, the second object always exerts a force of equal magnitude on the first object in a different direction.
- The acceleration of an object, but not necessarily its velocity, is always in the direction of the net force exerted on an object by other objects.
- If an object interacts with several other objects, the net force is the vector sum of the individual forces.

Essential Questions

- How can an object be made to accelerate?
- How do forces interact?
- How do objects respond to multiple forces acting on them?

Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly

exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: http://ngss.nsta.org/Classroom-Resources.aspx
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulationshttps://phet.colorado.edu/

Science NetLinks: <u>http://www.aaas.org/program/science-netlinks</u>

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	New Jersey Student Learning Standards
Dynamics and Newton's First Law	2 days	SWBAT describe what a force is, how it is measured, and how a force affects the motion of an object	Newton's First Law Demonstration Guided and individual/small group practice – predicting motion using Newton's First Law	Problem solving – predicting motion	HS-PS2 MP.2 MP.4 HSA-CED.A.4
Newton's	2 days	SWBAT	Newton's	Problem	HS-PS2-1

Unit Plan with Associated Standards Chart

Second Law		describe an	Second Law	solving –	MP.2
		object's	Demonstration	Newton's	
		acceleration in		second law	MP.4
		terms of its	Guided and	classwork and	
		mass and the	individual/group	homework	IISA.CED.A.4
		net force	practice –		
		acting on it	Newton's	Newton's	
			Second Law	Second Law	
		SWBAI	problems	Quiz	
		predict the	Ouiz review		
		magnitude of			
		the	Administer Quiz		
		acceleration			
		caused by a			
		known net			
		force			
Mass, Weight	3 days	SWBAT	Compare mass	Class work/	HS-PS2-1
& Newton's		explain the	and weight	homework –	MD 2
Third Law		difference	Nouton's Third	Problem	IVIP.2
		between mass	Low	Solving:	MP.4
		and weight	Law	normal force,	
		SWBAT find	Demonstration	Newton's	HSA-CED.A.4
		the direction	Guided and	I hird Law	
		and	individual/small	Ouiz	
		magnitude of	group practice –	Quiz	
		the normal	normal force		
		force			
			Guided and		
		SWBAT	individual/small		
		identify	group practice –		
		action-	Newton's I hird		
		reaction	Law problem		
		forces	solving		
		(Newton's			
		Third Law)			
Free Body	1 day	SWBAT	Veritasium	Problem	HS-PS2
Diagrams		interpret and	Video	solving	
		construct free	Guided and	homework –	
		body	individual/small	free body	
		diagrams	group practice -	alagrams	
			free body		
			diagrams		
Inertia Lab	2 days	SWBAT	Inertia Lab	Inertia Lab	HS-PS2-2

		measure the		analysis and	MP.2
		acceleration		conclusion	
		due to gravity			MP.4
		SWBAT			HSA-CED.A.4
		Newton's			
		second law			
		empirically			
Kinetic and	2 days		Friction	Homework	HS_PS_2_1
Static Friction	2 days	identify	Demonstration	and classwork	115-1 5-2-1
		sources of	Demonstration	– friction	MP.2
		friction and	Guided and	problem	
		classify them	individual/small	solving	MP.4
			group practice –	borving	
		SWBAT	classifying		HSA-CED.A.4
		differentiate	friction		
		static and			
		kinetic	Guided and		
		friction	individual/small		
			group practice –		
		SWBAI	coefficient of		
		describe air	Iriction		
		fesisiance as a	problems		
		friation			
		metion			
		SWBAT use			
		the coefficient			
		of friction to			
		calculate			
		frictional			
		force and			
		compare			
		forces due to			
		friction			
Tension &	2 days	SWBAT use	Explain tension	Classwork/	HS-PS2-1
Apparent		free body	using practical	homework –	
Weight		diagrams to	examples	calculating	Н5-Р52-2
		solve for the	Eroo body	tension and	MP 2
		tension force	diagrams to	apparent	
		and apparent	calculate tension	weight using	MP.4
		weight	and apparent	tree body	
			weight _ onided	alagrams	HSA-CED.A.4
			then individual/	Friction Ouiz	
			small group		

			practice		
			Friction review		
Friction Lab	3 days	TSW use a	Friction Lab	Friction Lab	HS-PS2-1
and Review Problems		graphical approach to	Review	Analysis and Conclusion	MP.2
		find the coefficient of	small group	Friction Lab	MP.4
		friction	practice	Quiz	HSA-CED.A.4
				Review Problems	
Hooke's Law	2 days	TSW establish	Hooke's Law	Hooke's Law	MP.2
Lab		Hooke's Law and find the	Discovery Lab	Lab Analysis and	MP.4
		value of the		Conclusion	HSA-CED.A.4
		constant for		Hooke's Law	
		multiple		Quiz	
		springs			
Review and	3 days	TSW apply	Review –	Problem	HS-PS2-1
Assess		their	individual and	solving –	
		knowledge of	small/group	review	HS-PS2-2
		Dynamics to complete a	practice	classwork and homework	MP.2
		review and formal	Review game	Dynamics	MP.4
		assessment	Assessment	Assessment	HSA-CED.A.4

9-12.HS-PS2

Motion and Stability: Forces and Interactions

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).

- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.

Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Mathematics

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 3: Universal Circular Motion

Science
Physics(6)
2nd Marking Period
14 Days
Published

Summary of the Unit

Summary of the Unit: This Unit involves the study of circular objects and their relationship to the physical world. Students will relate the radius of a circle and the speed or rate of revolution of a particle to the magnitude of the centripetal acceleration. Students will also learn how to describe the direction of a particle's velocity and acceleration at any instant during circular motion. Additionally, situations will be analyzed whereby an object moves with a specified acceleration under the influence of forces such that the magnitude and direction of successive forces that makes up the net force can be determined. Topics to address include motion in a horizontal circle (a merry go round) as well as vertical motion (swinging an object on a string).

Enduring Understandings

Enduring Understanding:

- The radius of a circular object and speed or rate of revolution of a particle relate to the magnitude of the centripetal acceleration.
- Situations exist whereby acceleration under the influence of one or more forces determine the magnitude and direction of the net force.

Essential Questions Essential Questions:

- How are Free Body diagrams and Newton's Laws used to solve circular motion problems?
- What are the applications of circular motion?
- How does apparent weight vary during circular motion?

Summative Assessment and/or Summative Criteria

Summative Assessment and/ or Summative Criteria to demonstrate mastery of the Unit.

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly

exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Resources:

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: http://njctl.org
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: <u>http://ngss.nsta.org/Classroom-Resources.aspx</u>
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulationshttps://phet.colorado.edu/

Science NetLinks: http://www.aaas.org/program/science-netlinks

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	New Jersey Student Learning Standards
Period and Frequency	2 days	SWBAT calculate the period and frequency of circular motion SWBAT describe the relationship	Problem solving – guided and individual/small group practice - period and frequency	Class work/ homework – problem solving – period and frequency	HS-PS4-1 MP.2 MP.4 HSA-
		between period and frequency			CLD.A.4

Unit Plan with Associated Standards Chart

Velocity and	4 days	SWBAT explain	Discussion	Class work	HS-PS2-1
Acceleration		how the kinematics of	Guided then	and homework –	MP.2
		circular motion differs from linear	individual/small group practice –	problem solving –	MP.4
		motion	acceleration	centripetal acceleration	HSA-
		SWBAT calculate centripetal acceleration	problem solving		CLD.A.4
Dynamics of	2 days	SWBAT explain	Demonstration	Class work	HS-PS-2-1
Circular Motion	2	how the apparent existence of an	– bucket on string	and homework –	MP.2
		outward force in circular motion	Centripetal	problem solving –	MP.4
		can be explained as inertia resisting the centripetal force	force calculations – guided then individual/small	centripetal force	HSA- CED.A.4
		SWBAT calculate centripetal force	group practice		
Free	3 days	SWBAT apply	Bucket on a	Classwork	HS-PS2-1
Response		their knowledge	string problems	and	
Problems		of circular motion	– small group	homework –	MP.2
		to solve practical physical problems	and individual practice	free response problems	MP.4
			Free Response problems – small group and		HSA- CED.A.4
			individual practice		
Review and	3 days	TSW apply their	Review for	Review –	HS-PS2-1
Assess		knowledge of	Assessment –	class work	
		circular motion to	small group and	and	HS-PS4-1
		review/assessment	individual	homework	MP.2
			practice	Assessment	MP.4
					HSA- CED.A.4

Motion and Stability: Forces and Interactions

Waves and Their Applications in Technologies for Information Transfer

Suggested Modifications for Special Education, ELL and Gifted Students Suggested Modifications for Special Education, English Language Learners and Gifted Students:

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

Suggested Technological Innovations/ Use:

- Internet for up-to-date resources such as journal articles and simulations (YouTube)
- Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics
- Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

Cross Curricular/ 21st Century Connections:

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Mathematics

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales

• Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 4: Universal Gravitation

Content Area:	Science
Course(s):	Physics(6)
Time Period:	2nd Marking Period
Length:	11 Days
Status:	Published

Summary of the Unit

This Unit discusses Newton's Law of Universal Gravitation. Objects in orbit will be discussed as well as properties of these objects. Students will calculate and find forces that symmetrical masses exert on each other. The strength and makeup of gravitational fields will be introduced along with a determination of the relative strength of these fields. Students will calculate and describe how the velocity, period of revolution and centripetal acceleration depend on the radius of the orbit.

Enduring Understandings

- A field associates a value of some physical quantity with every point in space.
- A gravitational field is caused by an object with mass.
- The gravitational field caused by a spherically symmetric object with mass is radial and, outside the object, varies as the inverse square of the radial distance from the center of that object.

Essential Questions

- How are mass, separation and gravitational force related?
- How does the mass of a planet relate to its gravitational force?
- How can apparent weightlessness of orbiting objects be explained?

Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: http://njctl.org
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: http://www.acs.org/content/acs/en/education.html
- Concord Consortium: Virtual Simulations: *http://concord.org/*
- International Technology and Engineering Educators Association: http://www.iteaconnect.org/
- National Earth Science Teachers Association: *http://www.nestanet.org/php/index.php*
- National Science Digital Library: *https://nsdl.oercommons.org/*
- National Science Teachers Association: http://ngss.nsta.org/Classroom-Resources.aspx
- North American Association for Environmental Education: *http://www.naaee.net/*
- Phet: Interactive Simulationshttps://phet.colorado.edu/
- Science NetLinks: http://www.aaas.org/program/science-netlinks

Topic/ Selection	Suggested Timeline	General Objectives	Instructional Activities	Suggested Benchmarks/	New Jersey
	per topic			Assessments	Student Learning Standards
Review of	3 days	SWBAT convert	Review of	Class work/	MP.2
Scientific Notation and		numbers to an from scientific	notation in addition to	homework – scientific notation	MP.4
Computations		notation and complete calculations with scientific notation	relevant computations involving scientific notation	practice	HSA- CED.A.4
Gravitational	1 day	SWBAT	Baseball	Classwork/	HS-PS2-4
Force		determine the force that one	activity/lab Presentation –	homework – gravitational force	MP.2
		symmetrical mass	guided/individual	problems	MP.4
		exerts on another.	practice of gravitational force problems	Baseball lab analysis	HSA- CED.A.4
Gravitational	2 days	SWBAT	Baseball	Classwork/	HS-PS2-4
Fields		determine the strength of the gravitational field	activity/lab, continued.	homework – gravitational field	MP.2

Unit Dian with Accordated Standards Chart

		at a specified point outside a spherically symmetrical mass.	Presentation – guided/individual practice of gravitational field problems	problems Baseball lab analysis	MP.4 HSA- CED.A.4
Orbital Motion	2 days	SWBAT recognize that the motion does not depend on the object's mass SWBAT Describe qualitatively how the velocity, period of revolution, and centripetal acceleration depend upon the radius of the orbit SWBAT Derive expressions for the velocity and period of revolution in such an orbit.	Orbital Motion Demonstration Presentation – guided/individual practice of Orbital Motion problems	Demonstration discussion/analysis Classwork/ homework – Orbital Motion problems	HS-PS2-1 HS-PS2-4 MP.2 MP.4 HSA- CED.A.4
Review and Assessment	3 days	TSW apply their knowledge of Universal Gravitation to review/assessment	Review for Assessment – small group and individual practice Assessment	Review – class work and homework Assessment	HS-PS2-1 HS-PS2-4 MP.2 MP.4 HSA- CED.A.4

9-12.HS-PS2

Motion and Stability: Forces and Interactions

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on

evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Mathematics

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 5: Energy

Science
Physics(6)
2nd Marking Period
13 Days
Published

Summary of the Unit

This Unit will explain the very broad concept of Energy. Students will be exposed to and use in real life situations the concept of work, the work-energy theorem, potential and kinetic energy, mechanical energy in addition to the Conservation of Energy in a system. Students will calculate kinetic and potential energy and be able to relate these changes. They will also be able to relate to work done by a force to the area under a graph of force as a function of position. The change in mechanical energy to other forms of energy and the relationship to work in addition to changes based on friction will be introduced as well. Conservation of Energy in the analysis of the motion of objects as it relates to Newton's Laws would be a central theme of this unit.

Enduring Understandings

- A force exerted on an object can change the kinetic energy of the object.
- Interactions with other objects or systems can change the total energy of a system.
- Certain quantities care conserved, in the sense that the changes in there quantities in a given system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.
- The energy of a system is conserved.

Essential Questions

- How do we determine the work done on a physical system when the net force acting on it and its displacement are known?
- How do we use the work/ energy theorem to determine the motion of an object?
- How do we apply energy conservation to determine the position and motion of an object?

Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: <u>http://ngss.nsta.org/Classroom-Resources.aspx</u>
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulations<u>https://phet.colorado.edu/</u>
- Science NetLinks: <u>http://www.aaas.org/program/science-netlinks</u>

Topic/ Suggestee	d General	Instructional	Suggested	New
Selection Timeline	Objectives	Activities	Benchmarks/	Jersey
per topic			Assessments	Student
				Learning
				Standards
Conservation 2-3 days	SWBAT	Rollercoaster	Rollercoaster	HS-PS2-1
of Energy & Gravitational Potential Energy	state and apply the relation between the work performed on an object by non- conservative forces and the change in an object's	demonstration or activity Presentation – guided and individual practice (Conservation problems and potential energy problems)	activity analysis Classwork/ homework problems Energy transfer diagrams	HS-PS3-1 MP.2 MP.4 HSA- CED.A.4

Unit Plan with Associated Standards Chart

	energy.	energy trai	nsfer	
	SWBAT			
	describe and			
	identify			
	situations in			
	which			
	mechanical			
	energy is			
	converted to			
	other forms			
	of energy.			
	SWBAT			
	identify			
	situations in			
	which			
	mechanical			
	energy is or			
	is not			
	conserved.			
	SWBAT			
	apply			
	conservation			
	of energy in			
	analyzing			
	the motion			
	of systems			
	of connected			
	objects, such			
	as all Atwood's			
	machine			
	machine.			
	SWBAT			
	apply			
	conservation			
	of energy in			
	analyzing			
	the motion			
	of objects			
	unat move			
	influence of			
	springs			
	springs.			

		SWBAT recognize and solve problems that call for application both of conservation of energy and Newton's Laws.			
Kinetic and Elastic Potential Energy	2 days	SWBAT calculate the change in kinetic energy or speed that results from performing a specified amount of work on an object. SWBAT analyze situations in which an object's mechanical energy is changed by friction or by a specified externally applied force. SWBAT calculate the work performed by the net force or by	Rube Goldberg Demonstration or activity Include Mixed problems from previous units Presentation and introduction of mathematical equations Guided and individual practice – kinetic and elastic potential energy problems	Rube Goldberg activity analysis Classwork/ homework – energy problems	HS-PS2-1 HS-PS3-1 HS-PS3-2 HS-PS3-3 MP.2 MP.4 HSA- CED.A.4

each of the					
forces that					
make up the					
net force, on					
an object					
that					
undergoes					
undergoes a					
specified					
change in					
speed or					
kinetic					
energy.					
SWBAT					
annly the					
theorem to					
datarmina					
the shares					
the change					
in an					
object's					
kinetic					
energy and					
speed, which					
results from					
the					
application					
of specified					
forces, or to					
determine					
the force					
that is					
required in					
order to					
bring on					
oring an					
object to rest					
in a					
specified					
distance.					
SWBAT					
write an					
expression					
for the force					
everted hy					
an ideal					
all IUCal					
spring and					
		for the potential energy of a stretched or compressed spring.			
----------------------------------	------------	---	---	--	---
Energy Assessment	1 day	TSW apply their knowledge of energy to complete a practical problem- based assessment	Assessment	Assessment	HS-PS2-1 HS-PS3-1 HS-PS3-2 HS-PS3-3 MP.2 MP.4 HSA- CED A 4
Marble Launcher Lab	1 – 2 days	TWS apply the conservation of energy and observe the relationship among kinetic energy, gravitational potential energy, and elastic potential energy	Marble launcher presentation Marble Launcher activity	Marble Launcher lab data analysis and error analysis	CED.A.4 HS-PS2-1 HS-PS3-1 HS-PS3-2 HS-PS-3-3 MP.2 MP.4 HSA- CED.A.4
Power and General Problems	3 days	SWBAT calculate the power required to maintain the motion of an object with constant acceleration (e.g., to move an	Power demonstration Presentation and introduction of mathematical equations to solve power problems	Demonstration discussion/analysis Classwork/ homework – Power problems	HS-PS2-1 HS-PS3-1 HS-PS3-2 HS-PS3-3 MP.2 MP.4

		object along a level	Guided and individual		HSA- CED.A.4
		surface, to	practice –		
		raise an	power		
		object at a	problems		
		constant rate, or to overcome friction for	Guided and individual practice – mixed		
		that is	problems		
		that is			
		nioving at a			
		speed)			
		speed).			
		SWBAT			
		calculate the			
		work			
		performed			
		by a force			
		that supplies			
		constant			
		power, or			
		the average			
		power			
		supplied by			
		a force that			
		periorns a			
		specified			
		amount of			
Review and	2 - 3 dave	TSW apply	Practical	Review	HS_PS7_1
Assessment	2 - 5 days	their	problem-based	Homework/	110-1 02-1
		knowledge	review	Classwork	HS-PS3-1
		of Energy to		Clubbwolk	
		complete a	Practical	Assessment	HS-PS3-2
		review and	problem-based		HS_PS3_3
		assessment	assessment		110-1 00-0
					MP.2
					MP.4
					HSA- CED.A.4

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales

• Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 6: Momentum

Content Area:	Science
Course(s):	Physics(6)
Time Period:	2nd Marking Period
Length:	15 Days
Status:	Published

Summary of the Unit

The central idea of this unit is that a force exerted on an object can change the momentum of the object. The change in momentum of an object is a vector in the direction of the net force exerted on the object. Students will be able to discuss the relationship between certain physics quantities related to impulse and momentum in addition to exploring the fundamental law of physics-Conservation of Momentum.

Enduring Understandings

- A force exerted on an object can change the momentum of the object.
- The change in momentum of an object occurs over a time interval.

Essential Questions

- How do we determine the impulse on a physical system when the forces on the system and the time interval these forces are are known?
- What are the differences between elastic and inelastic collisions?

Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

• New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>

- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: <u>http://ngss.nsta.org/Classroom-Resources.aspx</u>
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulations<u>https://phet.colorado.edu/</u>
- Science NetLinks: <u>http://www.aaas.org/program/science-netlinks</u>

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	New Jersey Student Learning Standards
Momentum and Impulse	2 days	SWBAT compare the momentum of different	Demonstration/ Activity – tennis and basketball Presentation –	Tennis and Basketball Activity analysis questions Classwork/	HS-PS2-2 MP.2 MP.4
		objects SWBAT compare the momentum of the same object moving with different velocities SWBAT identify and describe changes of momentum of an object in terms of force and	momentum and impulse Guided/Individual practice – momentum and impulse	homework – momentum and impulse	HSA- CED.A.4

Unit Plan with Associated Standards Chart

Momentum	2 days	SWBAT	Demonstration/	Newton's Cradle	HS-PS2-2
of a System	-	describe the	Activity –	Activity analysis	
of Objects		interaction	Newton's Cradle	TT 1/	MP.2
and		between two		Homework/	MP 4
Conservation		objects in	Presentation –	classwork –	1711.7
of		terms of	conservation of	conservation of	HSA-
Momentum		momentum	momentum	nrohlema	CED.A.4
		of each	Guided/individual	problems	
		SWBAT	practice –		
		compare the	conservation of		
		total	momentum		
		momentum	problems		
		before and			
		after they			
		interact			
		SWBAT			
		predict the			
		final			
		momentum			
Inclastic) dava	SWDAT	Domonstration/	Diaguagian tranga	
Collisions	2 days	5 W DA I identify	video types of	of collisions video/	пэ-гэ2-2
and		different	collisions	demonstration	MP.2
Explosions		types of	Comsions	ucinonstration	
Explosions		collisions	Presentation –	Homework/	MP.4
			inelastic collisions	classwork –	
		SWBAT	and explosions	inelastic collisions	
		differentiate		and explosions	CLD.A.4
		inelastic	Guided/individual	problems	
		collisions	practice –		
		and	and explosions		
		explosions	and explosions		
		SWBAT			
		determine			
		the changes			
		in kinetic			
		energy			
		during			
		perfectly			
		inelastic			
		collisions			
Elastic	4 days	SWBAT	Demonstration –	Discussion/analysis	HS-PS2-2
Collisions		compare	crash cart	– crash cart	

		conservation	collisions	collisions	HS-PS2-3
		of momentum	Presentation –	Homework/	MP.2
		and conservation	elastic collisions	classwork – elastic collisions	MP.4
		of kinetic energy in perfectly inelastic and elastic	individual practice – collisions Momentum Lab	Momentum lab – data analysis and error analysis	HSA- CED.A.4
		SWBAT find the final velocity of			
		collisions			
		TSW			
		observe elastic and			
		inelastic			
		collisions and			
		demonstrate			
		that momentum			
Paviaw and	2 dave	TSW apply	Pavian practica	Classwork/	
Assessment	5 uays	their	algebraic	homework – review	по-год-д
		knowledge	problems,		HS-PS2-3
		of momentum	practical application	Assessment	MP.2
		to complete	problems		MP.4
		" momentum review and	Assessment		HSA- CED.A.4
		assessment			

9-12.HS-PS2

Motion and Stability: Forces and Interactions

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment

standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop

skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 7: Fluids

Content Area:	Science
Course(s):	Physics(6)
Time Period:	3rd Marking Period
Length:	13 Days
Status:	Published

Summary of the Unit

The central idea of this unit is that fluids, due to their molecular structure, behave differently than solids. Fluids are able to be used to transfer energy and do work. At the end of this unit, students will know density, specific gravity, fluid pressure, atmospheric pressure, Pascal's Principle, Buoyancy, Archimedes' Principle, Bernoulli's Principle, and hydraulics. Students will be able to utilize numerous algebraic expressions to solve for fluid pressure and buoyant force.

Enduring Understandings

- Forces have magnitude and direction. Forces vectors can be added. The net force on an object is the sum of all the forces acting on the object.
- An object at rest will remain at rest unless acted on by an unbalanced force; an object in motion at constant velocity will continue at the same velocity unless acted on by an unbalanced force.
- Mass is a direct measurement of inertia, resistance to acceleration.
- The motion of an object changes only when a net force is applied.
- During interactions every action force is countered by an equal and opposite reaction force.
- The magnitude of acceleration of an object depends directly on the strength of the net force, and inversely on the mass of the object. This relationship (a=Fnet/m) is independent of the nature of the force.
- Friction and fluid drag forces tend to slow or prevent the motion of objects.

Essential Questions

- How is density defined?
- What is the difference between gauge pressure and absolute pressure?
- How do hydraulic lifts work?
- What is the buoyant force?
- How do water speeds vary in pipes?

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: <u>http://ngss.nsta.org/Classroom-Resources.aspx</u>
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulationshttps://phet.colorado.edu/
- Science NetLinks: <u>http://www.aaas.org/program/science-netlinks</u>

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	New Jersey Student Learning Standards
Density, Specific Gravity, and Pressure	2 days	SWBAT describe, differentiate, utilize, and calculate density, specific gravity, and pressure	Density column demonstration Presentation – density, specific gravity, and pressure Guided/individual practice – density, specific gravity, and pressure	Density column demonstration analysis/discussion Classwork/ homework – density, specific gravity, and pressure	MP.2 MP.4 HSA- CED.A.4

Unit Plan with Associate Standards Chart

Pascal's	1-2 days	SWBAT	Hydraulic system	Hydraulic system	MP.2
Principle	-	describe how	demonstration/	activity – analysis/	
		pressure is	activity	discussion	MP.4
		transmitted in			
		a fluid	Presentation –	Classwork/	$\Pi SA - CED A 4$
		according to	Pascal's principle	homework –	CED.A.4
		Pascal's	and hydraulics	Pascal's Principle	
		Principle	Guided/individual	and hydraulics	
		SWBAT	practice –		
		explain how a	Pascal's principle		
		hydraulic	and hydraulics		
		system works			
		to change a			
		force			
		SWBAT			
		explain how			
		the speed and			
		pressure of a			
		fluid are			
		related			
		according to			
		Pascal's			
		Principle			
Buovancy and	3 days	SWBAT	Buoyancy	Classwork/	HS-PS2-1
Archimedes'	5 duys	determine the	demonstration	homework –	110 1 02 1
Principle		buoyant force		huovancy and	MP.2
i interpre		of an object	Presentation –	Archimedes'	
		and determine	buoyancy and	Principle	MP.4
		if it will sink	Archimedes'		
		or float	Principle	Classwork/	HSA-
		of fiout		homework –	CED.A.4
		SWBAT	Guided/individual	buoyant forces and	
		explain the	practice – buoyant	Archimedes'	
		effect of	forces and	principle	
		buoyancy on	Archimedes'		
		the apparent	Principle	Penny Buoyancy	
		weight of an		Lab analysis	
		object	Penny Buoyancy Lab		
		SWBAT			
		explain the			
		relationship			
		between the			

Fluid Dynamics	1 day	volume of fluid displaced by an object and buoyant force acting on an object according to Archimedes Principle SWBAT examine the motion of a fluid using the continuity equation SWBAT recognize the effects of Bernoulli's Principle on fluid motion	Aerodynamics demonstration Presentation – fluid dynamics and Bernoulli's Principle Guided/ individual practice – continuity equation and Bernoulli's principle	Aerodynamics demonstration analysis Classwork/ homework – continuity equation, Bernoulli's principle	MP.2 MP.4 HSA- CED.A.4
Review and Assessment	3 days	TSW apply their knowledge of fluids to complete a	Review consisting of conceptual and practical algebraic problems	Review consisting of conceptual and practical algebraic problems	HS-PS2-1 MP.2 MP.4
		unit review and assessment	Assessment	Assessment	HSA- CED.A.4

9-12.HS-PS2

Motion and Stability: Forces and Interactions

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests,

social/family background and knowledge of their community.

- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 8: Simple Harmonic Motion

Science
Physics(6)
3rd Marking Period
12 Days
Published

Summary of the Unit

Restoring forces can result in oscillatory motion. When a linear restoring force is exerted on an object displaced from an equilibrium position, the object will undergo a special type of motion called simple harmonic motion. This unit re-visits the concepts of potential and kinetic energy and applies those concepts to simple harmonic motion. Students will explore springs and pendulums and how potential and kinetic energy are related in those particular systems.

Enduring Understandings

- Restoring forces can result in oscillatory motion.
- Restoring force proportional to displacement from equlibrium.

Essential Questions

- What is simple harmonic motion?
- How do we determine the energy, position, speed, acceleration, frequency and period of a physical system?

Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

• New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>

- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: <u>http://ngss.nsta.org/Classroom-Resources.aspx</u>
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulations<u>https://phet.colorado.edu/</u>
- Science NetLinks: <u>http://www.aaas.org/program/science-netlinks</u>

Topic/ S Selection T p	uggested `imeline er topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	New Jersey Student Learning Standards
Simple 3 Harmonic Motion	days	SWBAT identify the conditions of simple harmonic motion SWBAT differentiate simple harmonic motion and unsteady harmonic motion SWBAT explain how force, velocity and acceleration change as an object vibrates	Simple Pendulum demonstration/ activity Presentation – simple harmonic motion Guided/individual practice – simple harmonic motion	Simple Pendulum activity analysis Classwork/ homework – simple harmonic motion	HS-PS2-1 HS-PS4-1 MP.2 MP.4 HSA- CED.A.4

Unit Plan with Associated Standards Chart

		harmonic motion			
Measuring	4 days	SWBAT	Mass Spring	Mass Spring	HS-PS2-1
Harmonic Motion		identify the amplitude	Pendulum Demonstration	Pendulum Demonstration	HS-PS4-1
		of vibration	Presentation –	analysis/discussion	MP.2
		SWBAT recognize	measuring harmonic motion	Classwork/ homework –	MP.4
		the relationship	Guided/individual	measuring harmonic motion	HSA- CED.A.4
		between period and frequency	measuring harmonic motion	Spring Pendulum Discovery Lab	
		SWBAT calculate the period and frequency	Spring Pendulum Discovery Lab	Analysis	
		of an object vibrating with simple harmonic motion			
Review and	3 days	TSW apply	Guided/	Practical review	HS-PS2-1
Assessment		their knowledge	individual practice and	Assessment	HS-PS4-1
		of simple harmonics	review		MP.2
		to complete a practical	Assessment		MP.4
		review and assessment			HSA- CED.A.4

9-12.HS-PS2 9-12.HS-PS4 Motion and Stability: Forces and Interactions

Waves and Their Applications in Technologies for Information Transfer

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on

evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 9: Sound and Waves

Content Area:	Science
Course(s):	Physics(6)
Time Period:	3rd Marking Period
Length:	14 Days
Status:	Published

Summary of the Unit

A wave is a traveling disturbance that transfers energy and momentum. Waves can propagate via different oscillation modes that transfer energy and momentum. In general, waves can be transverse or longitudinal. The amplitude of a wave is the maximum displacement from its equilibrium value. For a periodic wave, the period is the repeat time of the wave, the frequency is the number of repetitions of the wave per unit time. In this unit, students will explore both transverse and longitudinal waves and make conclusions about what happens when waves interact. They will also explore the concept of sound and how it is related to waves.

Enduring Understandings

- Waves can transfer energy and momentum from one location to another without permanent transfer of mass and serve as a mathematical model for the description of other phenomena.
- A periodic wave is one that repeats as a function of both tie and position and can be described by its amplitude, frequency, wavelength, speed and energy.
- When two waves cross, they travel through each other rather than bounce off each other.
- Waves can propagate via different oscillation modes such as transverse and longitudinal.
- Classically, the energy carried by a wave depends upon and increases with amplitude.
- Standing waves are the result of the addition of incident and reflected waves that are confined to a region.

Essential Questions

- What are the properties of waves?
- How do we distinguish the difference between longitudinal and transvers waves?
- What happens when two waves overlap?
- How do we define the nature of sound waves?
- How do different musical instruments such as open and closed tubes create sound?
- What happens when two sound waves interact?
- What happens when either the source of a sound or the observer moves?

Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: http://ngss.nsta.org/Classroom-Resources.aspx
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulationshttps://phet.colorado.edu/
- Science NetLinks: <u>http://www.aaas.org/program/science-netlinks</u>

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	New Jersey Student Learning Standards
Properties of Waves	2 days	SWBAT distinguish local particle movement from overall wave motion SWBAT interpret waveforms of transverse and	Wave demonstration Presentation – wave properties Guided/individual practice – calculating speed, frequency, and wavelength	Wave demonstration analysis Classwork/ homework - Calculations	HS-PS4-1 MP.2 MP.4 HSA- CED.A.4

Unit Plan with Associated Standards Chart

longitudinal waves			
SWBAT apply the relationship among wave			
frequency, and wavelength			
to solve			
SWDAT	Waya simulations	Classwork/	
apply the		homework –	п 5- г 54-1
superposition	Presentation –	calculations	MP.2
principle	wave interactions	and predictions	MP.4
SWBA1 differentiate between constructive	practice – interference calculations	Standing Waves Lab Analysis	HSA- CED.A.4
and destructive interference	Guided/individual practice – standing wave	Wave quiz	
SWBAT	predictions		
predict when a reflected wave will be inverted	Standing Waves Lab		
SWBAT predict			
whether specific			
traveling			
waves will			
produce a standing			
wave			
SWBAT identify			
nodes and			
antinodes of a standing			
	 longitudinal waves SWBAT apply the relationship among wave speed, frequency, and wavelength to solve problems SWBAT apply the superposition principle SWBAT differentiate between constructive and destructive interference SWBAT predict when a reflected wave will be inverted SWBAT predict when a reflected wave will be inverted SWBAT predict when a standing waves will produce a standing wave 	longitudinal wavesSWBAT apply the relationship among wave speed, frequency, and wavelength to solve problemsSWBAT apply the superposition principleWave simulations Presentation - wave interactionsSWBAT differentiate between constructive and destructive interferenceGuided/individual practice - interference calculationsSWBAT differentiate between constructive interferenceGuided/individual practice - standing waveSWBAT differentiate between constructive and destructive interferenceGuided/individual practice - standing waveSWBAT predict when a reflected wave will be invertedStanding Waves LabSWBAT predict whether specific traveling waves will produce a standing waveStanding Waves LabSWBAT predict whether specific traveling waves will produce a standing waveSWBAT identify nodes and antinodes of a standing	longitudinal wavesImage: sead of the second

		wave			
Sound	1 day	SWBAT	Doppler Effect	Doppler Effect	HS-PS4-1
Waves		explain how	demonstration	Demonstration	
		sound waves		analysis	MP.2
		are produced	Presentation –		
			Sound Waves	Classwork/	MP.4
		SWBAT	Guidad/individual	homework –	HSA-
		relate	Guided/Individual	Sound Waves	CED A 4
		frequency to	practice – sound	and Doppler	
		pitch	Doppler Effect	Effect	
		SWBAT	concentual	conceptual	
		compare the	nrohlems	problems	
		speed of	problems		
		sound in			
		various			
		media			
		SWBAT			
		recognize the			
		Doppler			
		Effect and			
		determine the	;		
		direction of a			
		Irequency			
		shift when			
		relative			
		motion			
		hetween a			
		source and			
		observer			
Sound	1 dav	SWBAT	Tuning Fork	Tuning Fork	HS-PS4-1
Intensity		Calculate the	Demonstration	Demonstration	
and		intensity of		Analysis	MP.2
Resonance		Sound waves	Presentation –		
			sound intensity	Classwork/	MP.4
		SWBAT	and resonance	homework –	HSA-
		relate	Guidad	Sound	CED A 4
		intensity,	judividual	Intensity and	
		decibel level,	nractice	Resonance	
		and	intensity and	Conceptual	
		perceived	resonance	problems	
		loudness	conceptual		
		SWBAT	problems		
		explain why	r		

		resonance			
		occurs			
Harmonics	2 days	SWBAT	Harmonics/	Harmonics/	HS-PS4-1
l'infinition	2 duys	differentiate	Instrument	Instrument	
		between the	Demonstration or	Demonstration	MP.2
		harmonic	Activity	or Activity	
		series of		analysis	MP.4
		open and	Presentation –		
		closed pipes	Harmonics	Classwork/	HSA- CED.A.4
		SWBAT	Guided/	open and	
		calculate the	individual	closed nine	
		harmonics of	practice – open	problems	
		a vibrating	and closed pipe		
		string and of	problems		
		open and			
		closed pipes			
		SWBAT			
		relate the			
		frequency			
		difference			
		between two			
		waves to the			
		number of			
		beats heard			
		per second			
Review and	3 days	TSW apply	Guided/	Classwork/	HS-PS4-1
Assessment		their	individual	homework –	MD 2
		knowledge of	practice –	review	MP.2
		Waves and	conceptual and	Aggaggmant	MP 4
		Sound to	algebraic	Assessment	
		complete a	problems		HSA-
		conceptual	Assessment		CED.A.4
		and algebraic	2 100000111011t		
		practical			
		review and			
		assessment			

9-12.HS-PS4

Waves and Their Applications in Technologies for Information Transfer

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment

standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop

skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 10: Electromagnetic Waves

Content Area:	Science
Course(s):	Physics(6)
Time Period:	4th Marking Period
Length:	10 Days
Status:	Published

Summary of the Unit

This unit is a continuation of the previous unit on waves, but allows students to explore electromagnetic waves such as light. Electromagnetic waves can transmit energy through a medium and through a vacuum. In general they are transverse waves composed of mutually perpendicular electric and magnetic fields. Students will explore, predict and defend observations and conclusions based on how light behaves as a wave. Explorations into the electromagnetic spectrum will also take place in addition to the relationships between wave speed and frequency.

Enduring Understandings

- Waves can propagate via different oscillation modes such as transverse and longitudinal.
- When waves pass through an opening whose dimensions are comparable to the wavelength, a diffraction pattern can be observed.
- Types of electromagnetic radiation are characterized by their wavelengths.
- Electromagnetic waves can transmit energy through a medium and through a vacuum.

Essential Questions

- How does light behave like a wave?
- How do we identify the electromagnetic spectrum?
- How does wave rate speed relate to frequency?

Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: <u>http://ngss.nsta.org/Classroom-Resources.aspx</u>
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulations<u>https://phet.colorado.edu/</u>
- Science NetLinks: <u>http://www.aaas.org/program/science-netlinks</u>

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	New Jersey Student Learning Standards
Characteristic of Light	1-2 days	SWBAT describe the characteristics of electromagnetic waves in a vacuum and how Michelson measured the speed of light SWBAT calculate the wavelength and frequency of electromagnetic radiation and describe their relationship SWBAT	Presentation – EM Radiation Guided/individual practice – wavelength and frequency Luminous Flux demonstration	Classwork/ homework – wavelength and frequency of EM radiation Luminous Flux demonstration analysis	HS-PS4-1 MP.2 MP.4 HSA- CED.A.4

Unit Plan with Associated Standards Chart

		describe the			
		evidence for the			
		dual nature of			
		EM radiation			
		SWBAT describe how the brightness			
		of a fight source			
		is affected by			
		distance			
Behavior of	4 days	SWBAT	Demonstration –	Materials and	HS-PS4-1
Light		classify	materials and	light	
		materials as	light	demonstration	MP.2
		transparent,	D	analysis	MP 4
		translucent, or	Presentation –	Deflection	1411 . 1
		opaque to	bellavior of light	Reflection,	HSA-
		visible light	Demonstration –	differentian	CED.A.4
		CUUDAT	reflection		
		SWBAI	refraction and	applyzig	
		hoppong when	diffraction	allarysis	
		light it		Classwork/	
		reflected	Guided/individual	homework –	
		refrected,	practice –	behavior of	
		nolorized or	behavior of light	light	
		diffracted	conceptual	conceptual	
		unnacicu	problems and	problems and	
		SWBAT solve	double slit	double slit	
		various	experiment and	experiment	
		problems	thin film algebraic	and thin films	
		relating to light	problems	mathematical	
		in double slit		problems	
		experiments	Diffraction		
		and thin films	Grating Lab	Diffraction	
		using		Grating Lab	
		appropriate		Analysis	
		equations			
Review and	3 days	TSW apply	Review – guided	Classwork/	HS-PS4-1
Assessment		their knowledge	and individual	homework –	
		of	practice	review	MP.2
		electromagnetic			MD 4
		radiation to	Assessment	Assessment	1 V1Γ.4
		complete a			HSA-
		review and			CED.A.4
		assessment			

comprising of both conceptual and	
mathematical problems	

9-12.HS-PS4

Waves and Their Applications in Technologies for Information Transfer

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting

quantities.

- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 11: Electricity and Circuits

Science
Physics(6)
4th Marking Period
17 Days
Published

Summary of the Unit

This unit involves a study of electricity, electric charge and electrical forces. Students will be exposed to the different types of charges involved in electricity. Students will make predictions about charges and explore the different types of interactions that occur. Coulomb's Law will be explored and the properties of this law will be used to solve real life problems. Students will be asked to make predictions about the charges involved in electricity. Electric charge is conserved. The net charge of a system is equal to the sum of the charges of all the objects in the system. This unit also asks students to explore electricity, charges and currents. Relationships between voltage, current and resistance will be explored as well as exploration into Ohm's Law. Kirchhoff's loop rule will be introduced whereby the conservation of energy in electrical circuits will be introduced. This is a common theme from earlier units.

Enduring Understandings

- Electric charge is a property of an object or system that affects its interactions with other objects or systems containing charge.
- Electric charge is conserved.
- There are only two types of electric charge.
- Electric charge is conserved.
- The resistance of a resistor and the capacitance of a capacitor can be understood from the basic properties of electric fields and forces.
- The values of currents and electric potential differences in an electric circuit are determined by the properties and arrangements of the individual circuit elements.

Essential Questions

- What are the names of and types of electric charges that exist?
- Which particle of an atom carries a positive charge? Which carries the negative charge?
- What causes the sparks that emanate from removing a sweater in a dark room?
- What are voltage, current and resistance?
- How are voltage, current and resistance related?
- What factors affect resistivity?
Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Resources:

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: <u>http://ngss.nsta.org/Classroom-Resources.aspx</u>
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulations<u>https://phet.colorado.edu/</u>
- Science NetLinks: <u>http://www.aaas.org/program/science-netlinks</u>

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	New Jersey Student Learning
					Standards
Electric	2 days	SWBAT	Demonstration –	Demonstration	HS-PS2-4
Charge and Static		analyze factors that	Introduction to Electrostatic	 Introduction to Electrostatic 	HS-PS3-1
Electricity		affect strength	Forces	Forces analysis	HS-PS3-2
		and direction of	Demonstration – Wimshurst	Demonstration	HS-PS3-5

Unit Plan with Associated Standards Chart

		electric	Generator	– Winshurst	MP.2
		forces and		Generator	
		fields	Presentation –	Analysis	MP.4
			electric charge		
		SWBAT	and static	Classwork/	HSA-
		describe	electricity	Homework –	CED.A.4
		how		electric charge	
		electric	Guided/individual	conceptual	
		forces and	practice –	problems	
		fields affect	conceptual	-	
		electric	problems		
		charges			
		SWBAT			
		describe			
		how			
		electric			
		charges are			
		transferred			
		and explain			
		why			
		electric			
		discharges			
		occur			
Electric	5 days	SWBAT	Demonstration –	Demonstration	HS-PS2-4
Current and		describe	Conductors and	– conductors	
Ohm's Law		electric	insulators	and insulators	HS-PS3-1
		current and		analysis	
		identify the	Presentation –		HS-PS3-2
		two types	Electric Current	Classwork/	HS_PS3_5
		of current	and Ohm's Law	homework –	110-1 05-5
			C: 1 - 1/: 1:: 11	conceptual	MP.2
		SWBAT	Guided/individual	problems and	
		describe	practice –	Ohm's Law	MP.4
		conduction		Problems	
		and classify	problems and		HSA-
		materials as	Onm's Law	Onm's Law	CED.A.4
		good	problems	Lab analysis	
		electrical	Ohm's Law Lah		
		conductors			
		of good			
		electrical			
		insulators			
		SWBAT			
		identify the			
		factors that			

		affect resistance SWBAT explain how voltage produces electric current SWBAT calculate voltage, current, and resistance using			
Electric Circuits	5 days	SWBAT analyze circuit diagrams for series circuits and parallel circuits SWBAT apply Kirchoff's Rules SWBAT solve equations that relate electric power to current, voltage, and electrical energy SWBAT describe devices and	Demonstration – electric circuits Presentation – electrical circuits Guided/Individual practice – circuit diagrams and Ohm's Law Series and Parallel Circuits Lab	Electric Circuits Demonstration analysis Classwork/ homework – circuit diagrams and Ohm's Law Series and Parallel Circuits Lab Analysis	HS-PS2-4 HS-PS3-1 HS-PS3-2 HS-PS3-5 MP.2 MP.4 HSA- CED.A.4

		for maintaining electrical safety			
Review and	3 days	TSW apply	Review – guided/	Classwork/	HS-PS2-4
Assessment		their knowledge of Electricity to complete a review and unit assessment	individual conceptual problems and algebraic problems Assessment	homework – review Assessment	HS-PS3-1 HS-PS3-2 HS-PS3-5 MP.2 MP.4
					HSA- CED.A.4

9-12.HS-PS2 9-12.HS-PS3 Motion and Stability: Forces and Interactions

Energy

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (<u>http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA</u>)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.
- Use project-based science learning to connect science with observable phenomena.

- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive

elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Mathematics

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Unit 12: Magnetism

Science
Physics(6)
4th Marking Period
14 Days
Published

Summary of the Unit

The magnetic field exerts a force on a moving electrically charged object. That magnetic force is perpendicular to the direction of the velocity of the object and to the magnetic field. The magnetic field vectors are tangent to concentric circles centered around a wire that carries an electric current. This unit allows students to determine the direction of the magnetic field created by a current carrying a wire. Students will also determine how to find the force exerted by a magnetic field on a moving charged particle or current carrying a wire.

Enduring Understandings

- A magnetic field is caused by a magnet or a moving electrically charged object.
- The magnetic field exerts a force on a moving electrically charged object.
- A magnetic force results from the interaction of a moving charged object or a magnet with other moving objects or another magnet.
- Electromagnetic forces are exerted at all scales and can dominate the human scale.

Essential Questions

- Both electric and magnetic forces will cause objects to repel and attract each other. What are the differences and origins of these forces?
- A magnet has a North and South Pole. If you cut the magnet in half, what happens to the 2 pieces?
- Do magnets exist with just a North Pole?
- What field circles a current carrying wire?

Summative Assessment and/or Summative Criteria

The tools used to assess the following criteria for mastery will be, but are not limited to: Quarterly exam, topic quizzes, chapter tests, projects, worksheets, and laboratory experiments.

Resources

Board approved textbooks, Teacher resource binder, Student generated resources, Internet web resources:

- New Jersey Center for Teaching and Learning: <u>http://njctl.org</u>
- American Association for the Advancement of Science: <u>http://www.aaas.org/programs</u>
- American Chemical Society: <u>http://www.acs.org/content/acs/en/education.html</u>
- Concord Consortium: Virtual Simulations: <u>http://concord.org/</u>
- International Technology and Engineering Educators Association: <u>http://www.iteaconnect.org/</u>
- National Earth Science Teachers Association: <u>http://www.nestanet.org/php/index.php</u>
- National Science Digital Library: <u>https://nsdl.oercommons.org/</u>
- National Science Teachers Association: <u>http://ngss.nsta.org/Classroom-Resources.aspx</u>
- North American Association for Environmental Education: <u>http://www.naaee.net/</u>
- Phet: Interactive Simulationshttps://phet.colorado.edu/
- Science NetLinks: http://www.aaas.org/program/science-netlinks

Topic/ Selection	Suggested Timeline per topic	General Objectives	Instructional Activities	Suggested Benchmarks/ Assessments	New Jersey Student Learning Standards
Magnets and Magnetic Fields	2 days	SWBAT describe the effect of magnetic forces and magnetic fields SWBAT explain how magnetic poles determine the direction of magnetic force	Magnet Demonstration Presentation – magnets and magnetic fields Guided/individual practice – conceptual problems and magnetic field line diagrams	Magnet Demonstration Analysis Classwork/ homework – conceptual problems and magnetic field line diagrams Magnets Lab analysis	HS-PS3-2 HS-PS3-5 MP.2 MP.4 HSA- CED.A.4
		SWBAT interpret diagrams of magnetic field	Magnets Lab		

Unit Plan with Associated Standards Chart

		lines around			
		one or more bar			
		magnets			
		SWBAT			
		describe Earth's			
		magnetic field			
		and its effect on			
		compasses			
		SWBAT			
		explain the			
		behavior of			
		ferromagnetic			
		materials in			
		terms of			
		magnetic			
		domains			
Electromagnetism	5 days	SWBAT	Presentation –	Classwork/	HS-PS3-2
		determine how	Electromagnetism	homework –	
		a moving		calculating	HS-PS3-5
		electric charge	Guided/individual	magnitudes of	MP 2
		creates a	practice –	magnetic forces	1711 .2
		magnetic field	calculating	and magnetic	MP.4
		SWDAT	magnitude of	fields	
		SWDAI determine the	and of the	Magnetic Field	HSA-
		direction of the	magnetic field	Mans Lab	CED.A.4
		magnetic field		analysis	
		created by a	Magnetic field	anarysis	
		current_carrying	Maps lab	Classwork/	
		wire		homework –	
			Presentation –	utilizing	
		SWBAT relate	Utilizing	electromagnetic	
		the force a	electromagnetic	devices	
		magnetic field	devices	conceptual	
		exerts on a	Cuidad/individual	problems	
		moving electric	prostico		
		charge to the	practice –		
		type of charge	alactromagnetic		
		and the	devices		
		direction of its			
		motion			
		SWBAT			
		determine the			
		force exerted by			

		a magnetic field			
		on a moving			
		charged particle			
		or a current-			
		carrying wire			
		carrying with			
		SWBAT			
		explain how			
		solenoids and			
		electromagnets			
		are constructed			
		and describe			
		factors that			
		affect the field			
		affect the field			
		strength of both			
		SWBAT			
		describe how			
		electromagnetic			
		devices use the			
		interaction			
		hetween			
		oloctrio ourronta			
		electric currents			
		and magnetic			
	0.1	nielas		D1	
Electrical Energy	2 days	SWBAT	Demonstration –	Electromagnetic	HS-PS3-2
Generation and		describe how	electromagnetic	Induction	US DS2 5
Transmission		electric current	induction	demonstration	115-1 55-5
		is generated by	Dragantation	analysis	MP 2
		electromagnetic	Presentation –	C1	1911 .2
		induction	electrical energy	Classwork/	MP.4
			generation and	nomework –	
		SWBAI	transmission	conceptual	HSA-
		compare AC	Guided/individual	problems	CED.A.4
		and DC	practice		
		generators and	practice –		
		explain how	nahlama		
		they work	problems		
		SWDAT			
		o w DA I			
		that determine			
		the externine			
		une output			
		voltage and			
		current			
		produced by a			

		transformer			
		SWBAT summarize how electrical energy is produced, transmitted, and converted for use in the home			
Review and	3 days	TSW apply	Guided/individual	Review –	HS-PS3-2
Assessment		their knowledge of Magnetism	practice for Review –	mathematical and conceptual	HS-PS3-5
		to complete a formal review	mathematical and conceptual	problems	MP.2
		and Magnetism	problems	Assessment	MP.4
		Assessment	Assessment		HSA- CED.A.4

9-12.HS-PS3

Energy

Suggested Modifications for Special Education, ELL and Gifted Students

*Consistent with individual plans, when appropriate.

Students with individual learning styles can be assisted through adjustments in assessment standards and time restraints, one-to-one teacher support, extended testing time, and use of visual and auditory teaching methods. This wide variety of assessments, strategies, and hands-on evaluations complement the individual learning experience. Additional strategies are as follows:

- Restructure lessons using Universal Design for Learning (UDL) principals (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA)
- Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.
- Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).
- Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tool such as SKYPE, experts from the community helping with a project, journal articles, and biographies).
- Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).
- Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understandings.

- Use project-based science learning to connect science with observable phenomena.
- Structure the learning around explaining or solving a social or community-based issue.
- Provide English Language Learners students with multiple literacy strategies.
- Collaborate with after-school programs or clubs to extend learning opportunities.

Suggested Technological Innovations/Use

-Internet for up-to-date resources such as journal articles and simulations (YouTube)

-Education focused websites, like Edmodo and Google Platform, to provide group forums to discuss topics

-Online programs, such as Quia and Kahoot, to assess and/or poll students before, during, and after unit lesson

Cross Curricular/21st Century Connections

9.1 21st Century Life and Career Skills: All students will demonstrate the creative, critical thinking, collaboration, and problem-solving skills needed to function successfully as both global citizens and workers in diverse ethnic and organizational cultures.

9.2 21st Century Life and Career Skills: Personal Financial Literacy: All students will develop skills and strategies that promote personal and financial responsibility related to financial planning, savings, investment, and charitable giving in the global economy.

9.3 21st Century Life and Career Skills: Career Awareness, Exploration, and Preparation: All students will apply knowledge about and engage in the process of career awareness, exploration, and preparation in order to navigate the globally competitive work environment of the information age.

English Language Arts/Literacy

- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
- Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
- Draw evidence from informational texts to support analysis, reflection, and research.

• Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Mathematics

- Reason abstractly and quantitatively.
- Model with mathematics.
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays
- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
- Interpret expressions that represent a quantity in terms of its context.
- Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.