AP PreCalculus Cover Sheet

Content Area: Mathematics Course(s): Time Period: Length: Full Year Status: Published

Course Overview

AP Precalculus is the fourth course in the honors college preparatory sequence that centers on functions modeling dynamic phenomena. This course is designed for students who have the appropriate background to understand the concepts and techniques in advanced college preparatory mathematics. The topics covered include logarithms, trigonometric functions, and identities, solving trigonometric equations, applications involving triangles, inverse trigonometric functions, trigonometric addition formulas, advanced graphing techniques, polar coordinates, vectors, sequences and series, and limits. This course is intended to prepare students for post-secondary education. It emphasizes higher-level mathematical thinking necessary to pursue the study of Advanced Placement Calculus and/or Statistics.

Course Name, Length, Date of Revision and Curriculum Writer

AP Precalculus Curriculum, Entire Year, 02/16/24, Manmeet Sachar and Melissa Prignoli

Unit 1 Polynomial and Rational Functions

Content Area:MathematicsCourse(s):APPreCalculusTime Period:1st Marking PeriodLength:7 weeksStatus:Published

Section Title

Unit 1: Polynomial and Rational Functions

Enduring Understandings

- Identify functions, and find their domain and range.
- Use function notation and evaluate functions abstractly and graphically.
- Use functions to model and solve real-life problems.
- Find the zeros of a function
- Analyze functions by determining intervals on which they are increasing, decreasing, or constant and determining their relative minimum and relative maximum values
- Determine the average rate of change for linear, quadratic, and other polynomial functions
- Identify key characteristics of polynomial functions related to rates of change
- Analyze polynomial functions by finding all zeros including complex ones using the Fundamental Theorem of Algebra, factoring, and graphing them, both manually and using technology.
- Identify even and odd functions.
- Analyze polynomial and rational functions by finding all zeros, and asymptotes (horizontal, vertical, and slanted) and graphing them, both manually and using technology.
- Rewrite polynomial and rational expressions in equivalent forms
- Use long division and synthetic division to divide polynomials.
- Use the Binomial Theorem and Pascal's Triangle to find binomial coefficients and write binomial expansions

- Recognize graphs of common functions, and use vertical, and horizontal shifts, reflections, and non-rigid transformations to graph them
- Use functions to model and solve real life problems
- Use polynomial and rational functions to model and solve real-life problems including ones with minimum and maximum values.

Summary of the Unit

In Unit 1, students develop an understanding of two key function concepts while exploring polynomial and rational functions. The first concept is covariation, or how output values change in tandem with changing input values. The second concept is rates of change, including average rate of change, rate of change at a point, and changing rates of change. The central idea of a function as a rule for relating two simultaneously changing sets of values provides students with a vital tool that has many applications, in nature, human society, and business and industry. For example, the idea of crop yield increasing but at a decreasing rate or the efficacy of medicine decreasing but at an increasing rate are important understandings that inform critical decisions.

Essential Questions

- How can you determine if a relation is a function?
- How are functions and their graphs related?
- How can technology be used to investigate the properties of families of functions and their graphs?
- What does the degree of a polynomial tell you about its related polynomial function?
- For a polynomial function, how are factors, zeros, and x-intercepts related?
- For a polynomial function, how are factors and roots related?
- How do the characteristics of graphs relate to their corresponding equations?
- How can algebra help us get information about a graph from an equation?
- How can I identify the characteristics of a rational function?
- How are rational functions related to each other and to inverse functions?
- What does the degree of a polynomial tell you about its related polynomial function?
- How do you divide a polynomial by another polynomial and use polynomial division to find the rational and real zeros of polynomials?
- How can you rewrite polynomial and rational exponents and write in equivalent form?
- How can you use the Binomial Theorem to write binomial expansions?
- Given a verbal description, how would you sketch a graph of this function?
- How do you write equations and draw graphs for the simple transformations of functions?

- How do rational functions model real-world problems and their solutions?
- How do polynomial functions model real-world problems and their solutions?

Summative Assessment and/or Summative Criteria

Required District/State Assessments

- SGO Pre Assessment
- SGO Post Assessment

Suggested Formative/Summative Classroom Assessments

- Describe Learning Vertically
- Identify Key Building Blocks
- Make Connections (between and among crucial building blocks)
- Short/Extended Constructed Response Items
- Multiple-Choice Items (where multiple answer choices may be correct)
- Drag and Drop Items
- Use of Equation Editor
- Quizzes
- Journal Entries/Reflections/Quick-Writes
- Accountable talk
- Projects
- Portfolio
- Observation
- Graphic Organizers/ Concept Mapping
- Presentations
- Teacher-Student and Student-Student Conferencing
- AP Classroom Assessments created with specific sections outlined.
- WebAssign Problem Sets <u>WebAssign Instructor Help</u>

- Homework
- Students will take formal assessments, such as tests and quizzes, to assess knowledge of concepts learned throughout the unit.
- Students will also demonstrate mastery through various assessment criteria included in the unit such as do nows, exit slips, graded classwork activities and assignments, and/or projects.

Resources

- AP Daily Videos: Section 1.1 1.2
- AP Daily Videos: Section 1.2 1.4
- AP Daily Videos: Section 1.5
- AP Daily Videos: Section 1.6-1.10
- AP Daily Videos: Section 1.11
- AP Daily Videos: Section 1.12
- AP Daily Videos: Section 1.13-1.14
- AP Precalculus Course Overview: <u>https://apcentral.collegeboard.org/courses/ap-precalculus/course</u>
- AP Precalculus Course and Exam Description: <u>https://apcentral.collegeboard.org/media/pdf/ap-precalculus-course-and-exam-description.pdf</u>
- AP Precalculus Practice Exam: <u>https://apcentral.collegeboard.org/media/pdf/ap-precalculus-practice-exam-multiple-choice-section.pdf</u>
- AP Precalculus Classroom Resources: <u>https://apcentral.collegeboard.org/courses/ap-precalculus/classroom-resources</u>
- Classpad.net (Casio): <u>https://classpad.net/us/</u>
- Desmos: <u>https://www.desmos.com/</u>
- Geogebra: <u>https://www.geogebra.org/?lang=en</u>
- Math Open Reference: <u>https://www.mathopenref.com/</u>
- TI Education (Texas Instruments): <u>https://education.ti.com/en</u>
- WolframAlpha: <u>https://www.wolframalpha.com/</u>

- Wolfram MathWorld: <u>https://mathworld.wolfram.com/</u>
- Khan Academy: https://www.khanacademy.org/math/precalculus
- Digital Mathematics Word Wall: <u>http://www.mathwords.com/index_adv_alg_precal.htm</u>
- Extra Notes for Pre-Calculus Content: <u>https://sites.google.com/a/evergreenps.org/ms-griffin-s-math-classes/updates</u>
- Review Documents for Pre-Calculus: <u>https://sites.google.com/site/dgrahamcalculus/trigpre-calculus/trig-pre-calculus-worksheets</u>
- Pre-Calculus IXL Topics and Resources: <u>https://www.ixl.com/math/precalculus</u>
- Classroom Challenges to Support Teachers in Formative Assessments: <u>http://map.mathshell.org/materials/lessons.php?gradeid=24</u>
- Applications of Function Models: <u>https://www.ck12.org/algebra/Applications-of-Function-Models/lesson/Applications-of-Function-Models-BSC-ALG/?referrer=featured_content</u>
- Statistics Education Web (STEW). <u>http://www.amstat.org/education/STEW/</u>
- The Data and Story Library (DASL). <u>http://lib.stat.cmu.edu/DASL/</u>
- <u>WebAssign Instructor Resources</u>
- <u>WebAssign Student Resources</u>
- Cengage Learning: PreCalculus with Limits A Graphing Approach, Sixth Edition

Topic/Selection	General Objectives	Instructional	Benchmarks/Assessments	Standards
Timeframe		Activities		
1.1 - Change in	SWBAT describes	Students will analyze	Circulate and monitor	2.B
Tandem	how the input and	how the input and	student progress as they are	
	output values of a	the output values of a	working on classwork.	3.A
(2 days)	function vary together	function, expressed	_	
	by comparing function	in different forms,		
	values.	vary according to its	TT . 1 . 1 .	
		function rule.	Have students complete	
			problems at the board.	
	SWBAT constructs a			

	graph representing two	Students will		
	graph representing two	determine intervals		
	with respect to each	of increase and	Through questioning	
	other	dearange over an	students will be able to	
	ouler.	interval of its	identify information from	
		domain	graphical numerical	
		domam.	analytical and verbal	
			representations or construct	
			a model with and without	
		Students will	technology	
		determine if a	teennology	
		function is concave		
		up or down by		
		analyzing the granh	Closure	
		unaryzing the gruph.		
		Students will identify		
		the zeros of function		
		both with and		
		without a graphing		
		calculator.		
1.2 - Rates of	SWBAT compare the	Students will recall	Circulate and monitor	2.A
1.2 - Rates of Change	SWBAT compare the rates of change at two	Students will recall that the slope of a	Circulate and monitor student progress as they are	2.A
1.2 - Rates of Change	SWBAT compare the rates of change at two points using average	Students will recall that the slope of a line is the rate of	Circulate and monitor student progress as they are working on classwork.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change.	Students will recall that the slope of a line is the rate of change of the	Circulate and monitor student progress as they are working on classwork.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change.	Students will recall that the slope of a line is the rate of change of the function. If the graph	Circulate and monitor student progress as they are working on classwork.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a	Circulate and monitor student progress as they are working on classwork.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students	Circulate and monitor student progress as they are working on classwork. Have students complete	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average rate of change from	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to calculate average rate of	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average rate of change from graphical, numerical,	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to calculate average rate of change from graphical,	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average rate of change from graphical, numerical, analytical, and verbal	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to calculate average rate of change from graphical, numerical, analytical, and	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average rate of change from graphical, numerical, analytical, and verbal representations.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to calculate average rate of change from graphical, numerical, analytical, and verbal representations or	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average rate of change from graphical, numerical, analytical, and verbal representations.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to calculate average rate of change from graphical, numerical, analytical, and verbal representations or construct a model with and	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average rate of change from graphical, numerical, analytical, and verbal representations.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to calculate average rate of change from graphical, numerical, analytical, and verbal representations or construct a model with and without technology.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average rate of change from graphical, numerical, analytical, and verbal representations.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to calculate average rate of change from graphical, numerical, analytical, and verbal representations or construct a model with and without technology.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average rate of change from graphical, numerical, analytical, and verbal representations.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to calculate average rate of change from graphical, numerical, analytical, and verbal representations or construct a model with and without technology.	2.A
1.2 - Rates of Change (1 day)	SWBAT compare the rates of change at two points using average rate of change. SWBAT describe how two quantities vary together at different points and over different intervals of a function.	Students will recall that the slope of a line is the rate of change of the function. If the graph of a function is not a straight line, students will use the terminology average rate of change. Students will calculate the average rate of change from graphical, numerical, analytical, and verbal representations.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to calculate average rate of change from graphical, numerical, analytical, and verbal representations or construct a model with and without technology.	2.A

1.3 - Rates of	SWBAT determine the	Students will find the	Circulate and monitor	3.B
Change in	average rates of	average rate of	student progress as they are	-
Linear and	change for linear and	change over a closed	working on classwork.	3.C
Quadratic	quadratic sequences	interval.		
Functions	and functions.			
(2 days)			Have students complete	
		Students will find the	problems at the board.	
	SWBAT determine the	slope of the secant		
	change of average	line over a closed		
	rates of change for	interval [a, b] from	Thursen an an artigration	
	linear and quadratic	the point (a, f(a)) to	I nrough questioning	
	functions,	(b, f(b)).	students will be able to	
			calculate average rate of	
			change from graphical,	
		Students will use	workel representations or	
		students will use	construct a model with and	
		change to determine	without technology	
		concernity	without teenhology.	
		concavity.		
			Closure	
		Students will write a		
		linear equation for		
		consecutive equal		
		length intervals that		
		represent the average		
		rate of change of a		
		quadratic function.		
1.4 -	SWBAT identify key	Students will identify	Circulate and monitor	2.A
Polynomial	characteristics of	the turning points of	student progress as they are	
Functions and	polynomial functions	a polynomial.	working on classwork.	3.A
Rates of Change	related to rates of		_	
(3 days)	change.			
		Students will find	Have students complete	
		relative and absolute	problems at the board.	
		extrema of a		
		polynomial.		
			Through questioning	
			students will be able to	
		Students will	identify key characteristics	
		describe end	of polynomials related to	
		behavior of a	rates of change	
		polynomial related to		
		even/odd functions		

			Closure	
		Students will find points of inflection by using key characteristics.	Quiz topics 1.1 - 1.4	
1.5 - Polynomial and Complex Zeros (2 days)	SWBAT to identify key characteristics of a polynomial function related to its zeros when suitable factorizations are available or with technology.	Students will use long division and synthetic division to find zeros of polynomials. Students will factor	Circulate and monitor student progress as they are working on classwork. Have students complete problems on the board.	1.B 2.B
	SWBAT determine if a polynomial function is even or odd .	polynomials over real and complex numbers. Students will understand that if a linear factor (x - a) is repeated n times, the corresponding zero of the polynomial has multiplicity n.	Through questioning students will be able to identify key characteristics of polynomials related to its zeros when factorizations are suitable or with technology and determine if a function is even or odd through symmetry tests.	
		Students will use the Conjugate Root Theorem to find the zeros of polynomials.		
		Students will find the degree of a polynomial using successive differences of output values over equal interval input values.		

	CWDAT	Students will determine whether a polynomial is even or odd using algebraic symmetry tests.	avia 15 16	1 D
Recognize graphs of common functions, and use vertical, and horizontal shifts, reflections, and non-rigid transformations to graph them.	Analyze the effect of the coefficients on the graph of a function. Identify horizontal and vertical shifts. Identify reflections and non-rigid transformations to the graph.	assessed on objectives learned in sections 1.5 and 1.6	quiz 1.5 - 1.0	2.B
(2 days) 1.7 Rational Functions and End Behaviors (3 days)	SWBAT Express functions, equations, or expressions in analytically equivalent forms that are useful in a given mathematical or applied context.	Each student is given cards containing different rational functions in analytical representations. Have students use a calculator to graph the function and then	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board.	1.B 3.A

		record the interests		
		on the cord of well of		
	SWBAT Describe the	limit evenessions to	Through questioning	
	characteristics of a	limit expressions to	students will be able to	
	function with vorving	describe the	identify information from	
	lavala of provision	runction's end	graphical numerical	
	denending on the	behavior and	graphical, numerical,	
	depending on the	behavior at each	analytical, and verbal	
	function representation	vertical or horizontal	representations or construct	
	and available	asymptote (e.g., lim f	a model with and without	
	mathematical tools.	$\mathbf{x}() = -\infty$, $\lim_{x \to \infty} \mathbf{f} \mathbf{x}()$	technology	
		$= + x \rightarrow 3 x \rightarrow \infty 2$). In		
		pairs, students take		
		turns reading their	Clasura	
		limit statements to	Closure	
		each other. Without		
		seeing the actual		
		rational function and		
		without using a		
		calculator, students		
		will try to sketch the		
		function's graph and		
		then check and		
		discuss. Have		
		students rotate to		
		form new pairs and		
		repeat.		
			Circulate and monitor	1 Δ
				1.1
			student progress as they are	1.7 X
			student progress as they are working on classwork.	1.7
			student progress as they are working on classwork.	1.71
			student progress as they are working on classwork.	1.71
			student progress as they are working on classwork.	1.71
			student progress as they are working on classwork. Have students complete	1.71
1 0 Decisional			student progress as they are working on classwork. Have students complete problems at the board.	1.71
1.8 Rational	SWBAT Solve		student progress as they are working on classwork. Have students complete problems at the board.	1.71
1.8 Rational Functions and	SWBAT Solve equations and		student progress as they are working on classwork. Have students complete problems at the board.	1.71
1.8 Rational Functions and Zeros	SWBAT Solve equations and inequalities		student progress as they are working on classwork. Have students complete problems at the board.	1.71
1.8 Rational Functions and Zeros	SWBAT Solve equations and inequalities represented		student progress as they are working on classwork. Have students complete problems at the board. Through questioning	1.71
1.8 Rational Functions and Zeros	SWBAT Solve equations and inequalities represented analytically, with and		student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to	1.71
1.8 Rational Functions and Zeros	SWBAT Solve equations and inequalities represented analytically, with and without technology.		student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to identify information from	1.71
1.8 Rational Functions and Zeros (2 days)	SWBAT Solve equations and inequalities represented analytically, with and without technology.		student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to identify information from graphical, numerical,	1.71
1.8 Rational Functions and Zeros (2 days)	SWBAT Solve equations and inequalities represented analytically, with and without technology.		student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal	1.71
1.8 Rational Functions and Zeros (2 days)	SWBAT Solve equations and inequalities represented analytically, with and without technology.		student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct	
1.8 Rational Functions and Zeros (2 days)	SWBAT Solve equations and inequalities represented analytically, with and without technology.		student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without	
1.8 Rational Functions and Zeros (2 days)	SWBAT Solve equations and inequalities represented analytically, with and without technology.		student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology	
1.8 Rational Functions and Zeros (2 days)	SWBAT Solve equations and inequalities represented analytically, with and without technology.		student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology	
1.8 Rational Functions and Zeros (2 days)	SWBAT Solve equations and inequalities represented analytically, with and without technology.		student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology	

		Closure	
		Circulate and monitor student progress as they are working on classwork.	2.A 3.C
1.9 Rational Functions and Vertical	SWBAT Identify information from	Have students complete problems at the board.	
Asymptotes (2 days)	analytical, numerical, analytical, and verbal representations to answer a question or construct a model, with and without technology.	Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology	
		Closure	
		Circulate and monitor student progress as they are working on classwork.	3.C
1.10 Rational		Have students complete problems at the board.	
Functions and Holes (2 days)	SWBAT Support conclusions or choices with a logical rationale or appropriate data	Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology	
		Closure	

1.11 Equivalent 1.11 Equivalent Representations and Rational ExpressionsSWBAT 1Express repressions in analytical representations, equations, analytical or expressions in analytical or applied context.inconstructing a graph, representations; expression as a product of linear factors (x = -) when given mathematical or applied context.Through questioning students will be able to inconstructing a graph, a given mathematical or applied context.3.B(2 days)SWBAT Construct new functions, that may forms that and without applied context.writing the expression as a product of linear factors (x = -) when graphs using technologyThrough questioning students will be able to identify information from graphical, numerical, analytical, and verbal regressions, that may fractors (x = -) when graphs using technology.Cisculate and monitor students will be able to identify information from graphs as real zeros, x- a repressions, that may fractors (x = -) when applied context.Students are given and rational functions, students and rational functions, using transformations, of Functions1.C 3.A1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given graphs as col and a horizontal transformation of new functions, using transformations, for units, students or effective in modeling of 2 units. Students actor of 3 and a horizontal transformation of for 2 units. Students writt the new transformation from graphs are then asket to for units, students will be able to will then switch with a per and ry to areat or of 3 and a horizontal transformation.Through questioning <th></th> <th></th> <th>Students are</th> <th></th> <th>1.B</th>			Students are		1.B
1.11 Equivalent 1.11 Equivalent and Rational and Rational 			presented with a		
1.11 Equivalent I.11 Equivalent of Polynomial and Rational Expressionsswarking on classwork. working on classwork. analytical or expressions in a given mathematical or applied context.polynomial representations variety of representations or expressions in or applied context.subtem translate representations or expression sin or expression sin or applied context.subtem translate representations product of linear prossible, and possible, and site expression sared zeros, x- intercepts, applied context.subtem translate representations representations or expression sin a product of linear possible, and holes. Then have students will be able to or expresentations or expression sin a site representations or construct a representations or construct analytical, and verbal representations or construct and rational holes. Then have students check their graphs using rechnologyCirculate and monitor students or polynomial and rational functions. Students arational functions students or of an ad holes. Then have students or of an ad holes. Then have students or or and rational functions. Students arational function students or of an ad horizontal translation of 2 units. Students atechnology.Lic circulate and monitor students or polynomial and rational function students or of an ad horizontal translation of 2 units. Students atechnology.Intercepts and transformation for mand rational function students or on struct mand rational function students or construct atechnology.Intercepts atechnology1.12SWBAT Describe the characteristics of a repression for the actor of 3 and a horizontal translation <td></td> <td></td> <td>nonconstant</td> <td>Circulate and monitor</td> <td>3.B</td>			nonconstant	Circulate and monitor	3.B
1.11 Equivalent Representations of Polynomial and Rational 			polynomial or	student progress as they are	
1.11 Equivalent Representations of Polynomial and Rational ExpressionsSWBAT 1 Express functions, equations, functions, equations, or expressions in analytically equivalent representations: forms that are useful in or applied context.Have students complete problems at the board.2 days)SWBAT Apply agiven mathematical or agiven mathematical or agiven mathematical or applied context.Through questioning students will be able to identify information from graphical, numerical, analytical and verbal representations or construct a regression, shat are useful in modeling, characteristics such a students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a regression, shat may be useful in modeling, compositions, regression, shat may be useful in modeling, compositions, inverses, or regression, with and without technology.Circulat and monitor students are given graphs of polynomial and rational functions. Students are then asked to areasformations inverses, or regression, with at may be useful in modeling, contexts, criteria, or factor of 3 and a horizontal translation function with varying rectical dilation by a factor of 3 and a horizontal translation function with varying rectical dilation by a factor of 3 and a horizontal translation function appresentations or construct a peer and try to write the new expression for the problems at the board.1.C			rational function in	working on classwork.	
1.11 Equivalent Representations of Polynomial and Rational and Rational expressionsSWBAT 1Express the wythen translate the expression into a variety of analytically equivalent representations: angiven mathematical or applied context.Have students complete problems at the board.2 days)given mathematical or applied context.writing the expression as a product of linear factors (x a -) when product of linear factors (x a -) when applied context.Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology(2 days)SWBAT Construct new functions, using transformations of FunctionsSWBAT Construct new functions, suing transformations, inverses, or inverses, or inverses, of technology.Circulate and monitor students regiven graphs of polynomial and ational functions. Students are then asked to graphs at are then asked to graphs at technology.Circulate and monitor student progress as they are working on classwork.1.C1.12SWBAT Describe th characteristics of a functions with and without technology.Students are given graphs at tartor of 3 and a horizontal translation of 2 units. StudentsThrough questioning students will be able to inverses, or graphs at tartor of 3 and a horizontal translation of 2 units. StudentsThrough questioning students will be able to identify information from graphical, numerical, analytical, and verbal expression for the representations or construct a factor of 3 and a function with varying levels of precision, depen			analytical		
Representations of Polynomial and Rational ExpressionsSWBAT LExpressthey then translate the expression in a variety ofHave students complete problems at the board.Expressionsanalytically equivalent a given mathematical given mathematical papiled context.mathematical representationsThrough questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations, ransformations, of FunctionsThrough questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a real zeros, x- intercepts, and holes. Then have students check their graphs using technologyCirculate and monitor student progress as they are working on classwork.I.C1.12SWBAT Construct new functions, using transformations, of FunctionsSWBAT Construct inverses, or regressions, that may be useful in modeling contexts, criteria, or and ational functions, students actional afta at, with and without technology.Circulate and monitor student progress as they are working on classwork.I.C1.12SWBAT Describe the characteristics such aftaret critics such aftaret or 3 and a function with varying levels of precision, depending on the function representationThrough questioning students will be able to identify information from graphical, numerical, analytical, and verbal regression for the problems at the board.I.C3 days)Gadays)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representation functio	1.11 Equivalent		representations, and		
of Polynomial and Rational or expressions in or expressions in analytically equivalent representations: forms that are useful in or applied context. sWBAT Apply applied context.Have students complete problems at the board.(2 days)SWBAT Apply applied context.Through questioning expression as a product of linear possible, and verbally describing characteristics such as real zeros, x- intercepts, asymptotes, and holes. Then have students without technologyThrough questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology(2 days)SWBAT Construct new functions, using itransformations, of FunctionsSWBAT Construct new functions, using inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.Circulate and monitor students are given graphs of polynomial and rational and rational and rational and rational and rational and rational and rational and rational are then asked to graph a transformations, of FunctionsCirculate and monitor students complete problems at the board. graph a transformation of ne of the provided graphs, such as a vertical dilation by a function of technology.Circulate and monitor students complete problems at the board. graph a transformation of ne of the provided graphs, such as a vertical dilation by a function with varying levels of precision, depending on the function representationThrough questioning students will be able to with the new expression for the a function representation<	Representations	SWBAT 1Express	they then translate		
and Rational Expressionsor expressions in analytically equivalent forms that are useful in constructing a graph, a given mathematical or applied context.variety of repression as a product of linear factors (x a -) when possible, and yorshald describing analytical, and verbal representationsproblems at the board.(2 days)SWBAT Apply numerical results in a given mathematical or applied context.module of linear possible, and vorbally describing characteristics such as real zeros, x- intercepts, asymptotes, and holes. Then have students check their graphs of polynomial functions, sting transformations, of FunctionsSWBAT Construct new functions, using transformations, of FunctionsStudents are given graphs of polynomial transformation of one of the provided graphs, such as a vertical dilation by a technology.Circulate and monitor student progress as they are working on classwork.1.C1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given graphs of polynomial function with any with and with and without technology.Circulate and monitor student progress as they are hard transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will be able to identify information from a graph a transformation technology.1.C3 days)GadaysSWBAT Describe the function with varying levels of precision, due with and without technology.Through questioning students will be able to identify information from a green and try to write the new write the new write the n	of Polynomial	functions, equations,	the expression into a	Have students complete	
Expressionsanalytically equivalent forms that are useful in constructing a graph, a given mathematical or applied context.Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal repressions, har may be useful in modeling transformationsThrough questioning students will be able to identify information from graphical, numerical, analytical, and verbal repressions, har may be useful in modeling transformationsI.121.12SWBAT Construct new functions, intercepts, asymptotes, and holes. Then have students check their graphs of polynomial and rational transformations of FunctionsSWBAT Construct new functions, using transformations, intercepts, asymptotes, and holes. Then have students check their graphs of polynomial and rational transformations of FunctionsCirculate and monitor student progress as they are working on classwork.1.C3.A(3 days)SWBAT Describe the function representationof 2 units, Students of 2 units, Students will then switch with a peer and try to write the new write the new <b< td=""><td>and Rational</td><td>or expressions in</td><td>variety of</td><td>problems at the board.</td><td></td></b<>	and Rational	or expressions in	variety of	problems at the board.	
(2 days)forms that are useful in a given mathematical or applied context.constructing a graph, writing the composition as a product of linear factors (x a -) when possible, and unerical, analytical, and verbal representations or construct as real zeros, x- intercepts, asymptotes, and holes. Then have students check their graphs of polynomial ransformations, iof FunctionsThrough questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a sreal zeros, x- intercepts, asymptotes, and holes. Then have students check their graphs of polynomial and rational functions, using transformations, iof FunctionsSWBAT Construct new functions, using transformations, inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.Students are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vortical dilation by a factor of 3 and a horizontal translation of 2 units. Students write the new write the new transformation.Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations for the graphical, numerical, analytical, and verbal representationsThrough questioning tudents will be able to identify information from graphical, numerical, analytical, and verbal1.12SWBAT Describe the characteristics of a function with varying l	Expressions	analytically equivalent	representations:		
a given mathematical or applied context.writing the expression as a product of linear factors (x a -) when applied context.Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technologyThrough questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technologyThrough questioning students such as a cal representations or construct a model with and without technology1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given regressions, that may technology.Circulate and monitor students are given and rational functions. Students are then asked to graph a transformation of one of the provided graph s, such as a technology.Circulate and monitor students progress as they are working on classwork.1.C a.A1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given graph a transformation of one of the provided graph s, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students after of 3 and a horizontal translation of 2 units. Students write the new expression for the graphical, numerical, analytical, and verbal1.C3 days)SWBAT Describe the function representationsof 2 units. Students write the new expression for the expression for the uper students will be able to write the new expression for the expression for the expression for the uper students		forms that are useful in	constructing a graph,		
(2 days)SWBAT Apply numerical results in a given mathematical or applied context.expression as a product of linear factors (x a -) when possible, and verbally describing aranzeristics such as real zeros, x- intercepts, asymptotes, and holes. Then have students check their graphs using technologyintercepts, analytical, and verbal representations or construct a model with and without technology1.1C1.12SWBAT Construct new functions, using transformations, of FunctionsSWBAT Construct new functions, using transformations, compositions, regression, that may technology.Students are given graphs a functions. Students are then asked to graph a transformation of one of the provided graph a transformation of of 2 units. Students are then asked to graph a transformation of one of the provided graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students write the new write the new write the new write the new write the new transformation.Through questioning total dilation by a factor of 3 and a horizontal translation or function representation1.C3 days)SWBAT Describe the function representation function representationThrough questioning representations or construct and a rational the new twill be able to write the new transformation.1.C3 days)Gadays)AThr		a given mathematical	writing the	Through questioning	
(2 days)SWBAT Apply numerical results in a given mathematical or applied context.product of linear factors (x a -) when possible, and verbally describing characteristics such as real zeros, x- intercepts, asymptotes, and holes. Then have students check their graphs using technologyidentify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology1.12SWBAT Construct new functions, using transformations, compositions, of FunctionsStudents are given graphs using technologyCirculate and monitor students are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graph a transformation of of 2 units. Students students will be able to with the new wretical dilation by a factor of 3 and a horizontal translation of 2 units. Students students will be able to with the new expression for the graphical, numerical, analytical, and verbal expresentations or construct analytical, and verbal expresentations or construct analytical, and verbal expresentations or constructI.C3 days)SWBAT Describe the characteristics of a function representation function representation tevels of precision, depe		or applied context.	expression as a	students will be able to	
SWBAT Apply numerical results in a given mathematical or applied context.factors (x a -) when possible, and verbally describing as real zeros, x- intercepts, asymptotes, and holes. Then have students check their graphs using technologyfactors (x a -) when possible, and werbally describing analytical, and verbal representations or construct a model with and without1.12SWBAT Construct new functions, using transformations, of FunctionsSWBAT Construct new functions, using transformations, compositions, technology.Students are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of of Eunctiong.Circulate and monitor students are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of of 2 units. Students atta, with and withoutI.C3.A(3 days)SWBAT Describe the function representation of depending on the function representationSWBAT Describe the function representation of 2 units. Students will then switch with a peer and try to write the new xpression for the functionCirculate and monitor students complete problems at the board.(3 days)SWBAT Describe the function representation of tevels of precision, depending on the functionThrough questioning students will be able to write the new xpression for the function transformation.Through questioning students will be able to write the new andytical, and verbal analytical, and verbal(3 days)Gadys)A			product of linear	identify information from	
(2 days)numerical results in a given mathematical or applied context.possible, and verbally describing characteristics such asymptotes, and holes. Then have students check their graphs using technologypossible, and verbally describing characteristics such a model with and without technology1.12SWBAT Construct new functions, using transformations, compositions, inverses, or regressions, that may be useful in modeling of FunctionsStudents are given graphs using technologyCirculate and monitor students regiven graphs using technologyI.C1.12SWBAT Construct new functions, using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.Students are given graph a transformation of one of the provided graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to will then switch with a peer and try to write the new expression for the function representationInc(3 days)SWBAT Describe the function representationwill then switch with a peer and try to write the new expression for the function representationThrough questioning students will be able to write the new expression for the function ir ansformation.Through questioning students will be able to analytical, and verbal representations or construct a model with and without technology.		SWBAT Apply	factors (x a –) when	graphical numerical	
(2 days)given mathematical or applied context.verbally describing characteristics such as real zeros, x- intercepts, asymptotes, and holes. Then have students check their graphs using technologyrepresentations or construct medel with and without technology1.12SWBAT Construct new functions, using transformations, of FunctionsSWBAT Construct new functions, using transformations, regressions, that may be useful in modeling of FunctionsSWBAT Construct new functions, using transformations, regressions, that may be useful in modeling ontexts, criteria, or data, with and without technology.SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationCirculate and monitor students are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a presentations or o construct a presentation of of 2 units. Students will then switch with a peer and try to write the new expression for the function representationI.C intercepts tamsformation of of 3 and a transformation form a peer and try to write the new expression for the function transformation.Circulate and monitor students complete problems at the board.I.C 3.A(3 days)SWBAT Describe the characteristics of a function representationThrough questioning students will be able to identify information from a model with and without technologyThrough questioning students and verbal representations or construct a model with and without technol		numerical results in a	possible, and	analytical and verbal	
(2 days)applied context.characteristics such as real zeros, x- intercepts, asymptotes, and holes. Then have students check their graphs using technologyam odel with and without technology1.12SWBAT Construct new functions, using transformationsStudents are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students actor of 3 and a function with varying levels of precision, depending on the function representationStudents are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students write the new expression for the function with varying levels of precision, depending on the function representationInc(3 days)(3 days)applied context. context, criteria, or data, with and without technology.Circulate and monitor students are the asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to write the new expression for the function transformation.Inc(3 days)adays)applied context. technologyInc(3 days)applied context. function representationThrough questioning students will be able to identify information from a model with and without technology <td></td> <td>given mathematical or</td> <td>verbally describing</td> <td>representations or construct</td> <td></td>		given mathematical or	verbally describing	representations or construct	
(2 days)as real zeros, x- intercepts, asymptotes, and holes. Then have students check their graphs using technologyIntercepts, technology1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a technology.Circulate and monitor student progress as they are working on classwork.1.C3.A1.12Transformations of Functions1.12Transformations, of FunctionsSWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationStudents are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to write the new expression for the function transformation.Inc(3 days)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationThrough questioning students will be able to write the new analytical, and verbal expression for the function transformation.(3 days)days)		applied context.	characteristics such	a model with and without	
Intercepts, asymptotes, and holes. Then have students check their graphs using transformationsClosure1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. StudentsCirculate and monitor student progress as they are and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to write the new write the new write the new write the new write the new write the new write the new inction representationI.C(3 days)SWBAT Describe the function representationSWBAT Describe the function representationThrough questioning graphical, numerical, and verbal representations or construct a model with and without technology.I.C	(2 days)		as real zeros, x-	technology	
1.12SWBAT Construct new functions, using transformationsStudents are given graphs of polynomia and rational functions. Students are then asked to graph a transformationsCirculate and monitor student progress as they are working on classwork.1.C1.12SWBAT Construct new functions, using transformations, inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.Students are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students are then awked to graphs. Such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. StudentsCirculate and monitor student progress as they are working on classwork.3.A(3 days)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationThrough questioning students will be able to analytical, and verbal representations or construct a model with and without technology.Interventional technology.			intercepts,	teennology	
1.12Noles. Then have students check their graphs using technologyClosureI.C1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. StudentsCirculate and monitor student progress as they are working on classwork.1.C3.A8.WBAT Describe the characteristics of a function with varying levels of precision, depending on the function miterion of the characteristics of a function with varying levels of precision, function with varyingSWBAT Describe the characteristics of a function with varying levels of precision, function with varying levels of precision, function with varying levels of precision, function with varying levels of precision, function with varying levels of precision, depending on the function representationTheough questioning of 2 units. Students will then switch with identify information from a nalytical, and verbal representations or construct a model with and without technology.(3 days)Hawe students or construct function with varying levels of precision, function with varying levels of precision, function with varying levels of precision, functionNormation.(3 days)Hawe students are given representationThe provided representationThe provided representation(3 days)Hawe students complete representationThe provided representationThe provided represen			asymptotes, and		
1.12SWBAT Construct new functions, using technologyStudents are given graphs of polynomial and rational functions. Students are then asked to graph a transformations of FunctionsCirculate and monitor student progress as they are working on classwork.1.C1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to graphical, numerical, write the newCinculate and monitor student progress as they are working on classwork.1.C3.A(3 days)(3 days)			holes. Then have		
Initial systemgraphs using technologyInitial system1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of expressions, that may be useful in modeling contexts, criteria, or data, with and without technology.Circulate and monitor student progress as they are working on classwork.3.A(3 days)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationSWBAT Describe the characteristics of a function representationThrough questioning students will be able to wilt then new expression for the function representation.Through questioning students will be able to wilt than divithout transformation.(3 days)Gays)Through questioning students or construct a model with and without transformation.Through questioning students will be able to wilt than divithout transformation.			students check their	Closure	
1.12SWBAT Construct new functions, using transformations, of FunctionsStudents are given graphs of polynomia and rational functions. Students are then asked to graph a transformation of oe useful in modeling contexts, criteria, or data, with and without technology.Circulate and monitor student progress as they are working on classwork.1.C1.12SWBAT Construct new functions, using transformations, regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.Students are given graph a transformation of one of the provided graphs, such as a vertical dilation by a technology.Circulate and monitor students progress as they are working on classwork.3.A1.12Through questioning students will be able to identify information from a peer and try to uwrite the new expression for the function with varying levels of precision, depending on the function representationStudents will be able to identify information from graphical, numerical, a model with and without technology.Intervent transformation from a peer and try to write the new analytical, and verbal expression for the function representation.Through questioning students will be able to identify information from analytical, and verbal expression for the function representation.Intervent transformation.Intervent technology.			graphs using		
1.12SWBAT Construct new functions, using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.Students are given graphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to write the new analytical, and verbal expression for the function representationStudents are given graphs of polynomial and rational function with varying levels of precision, depending on the function representationStudents are given graphs of polynomial are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. StudentsCirculate and monitor students complete problems at the board.1.C(3 days)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representation.Students will be able to identify information from a model with and without technology1.C			technology		
SwBAT Construct new functions, using transformations of Functionsgraphs of polynomial and rational functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to write the new eusels of precision, depending on the function representationOther an annual student progress as they are working on classwork.3.A1.12compositions, inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.graphs of polynomial and rational function students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. StudentsHave students complete problems at the board.3.A(3 days)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationThrough questioning students will be able to will then switch with a peer and try to write the new expression for the function transformation.Through questioning students will be able to identify information from a analytical, and verbal representations or construct a model with and without technology			Students are given	Circulate and monitor	1.C
1.12new functions, using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.and rational function students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students function with varying levels of precision, depending on the function representationand rational functions. Students are then asked to graph aand rational functions. Students are then asked to graph aand rational function students complete problems at the board.3.A <td></td> <td>SWBAT Construct</td> <td>graphs of polynomial</td> <td>student progress as they are</td> <td></td>		SWBAT Construct	graphs of polynomial	student progress as they are	
1.12functions, inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.functions. Students are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students students will be able to will then switch with a peer and try to graphical, numerical, analytical, and verbal representationHave students complete problems at the board.(3 days)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationfunctions. Students transformation.Through questioning students will be able to write the new analytical, and verbal representation.		new functions, using	and rational	working on classwork	3.A
1.12compositions, inverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. StudentsHave students complete problems at the board.(3 days)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationare then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to write the new expression for the function representationThrough questioning students will be able to identify information from graphical, numerical, a model with and without technology		transformations,	functions. Students	working on classwork.	
Transformationsinverses, or regressions, that may be useful in modeling contexts, criteria, or data, with and without technology.graph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. StudentsHave students complete problems at the board.(3 days)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationgraph a transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. StudentsHave students complete problems at the board.(3 days)SWBAT Describe the characteristics of a function representationMarket and translation of 2 units. StudentsThrough questioning students will be able to identify information from graphical, numerical, a model with and without transformation.	1.12	compositions,	are then asked to		
of Functionsregressions, that may be useful in modeling contexts, criteria, or data, with and without technology.transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. StudentsHave students complete problems at the board.(3 days)SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationThrough questioning students will then switch with a peer and try to write the new expression for the function.Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representation.	Transformations	inverses, or	graph a		
 (3 days) be useful in modeling contexts, criteria, or data, with and without technology. one of the provided graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representation days) 	of Functions	regressions, that may	transformation of	Have students complete	
 (3 days) (3 days) contexts, criteria, or data, with and without technology. graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representation graphs, such as a vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to write the new expression for the function then switch with a peer and try to write the new expression for the function then switch with a peer and try to write the new expression for the function then switch with a peer and try to write the new expression for the function then switch with a peer and try to then switch with analytical, and verbal then switch with analytical, and without then switch with analytical, and without then switch with analytical, and without 		be useful in modeling	one of the provided	problems at the board.	
 (3 days) data, with and without technology. vertical dilation by a factor of 3 and a horizontal translation of 2 units. Students will be able to identify information from graphical, numerical, analytical, and verbal representation (3 days) 		contexts, criteria, or	graphs, such as a	1	
 (3 days) factor of 3 and a horizontal translation of 2 units. Students factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to function with varying levels of precision, depending on the function representation factor of 3 and a horizontal translation of 2 units. Students will then switch with a peer and try to expression for the function factor of 3 and a horizontal translation of 2 units. Students factor of 3 and a horizontal translation of 2 units. Students factor of 3 and a horizontal translation a peer and try to expression for the function factor of 3 and a horizontal translation apeer and try to expression for the function factor of 3 and a horizontal translation apeer and try to expression for the function factor of 3 and a horizontal translation apeer and try to expression for the function factor of 3 and a horizontal translation apper and try to expression for the function factor of 3 and a horizontal translation factor of 3 and a horizontal translation apper and try to students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without 		data, with and without	vertical dilation by a		
 (3 days) (3 days) horizontal translation of 2 units. Students horizontal translation of 2 units. Students will then switch with a peer and try to graphical, numerical, analytical, and verbal evels of precision, depending on the function representation transformation. 		technology.	factor of 3 and a		
 (3 days) (4 days) (5 2 units. Students will then switch with a peer and try to graphical, numerical, analytical, and verbal representation (5 2 units. Students will then switch with a peer and try to graphical, numerical, analytical, and verbal representations or construct transformation. 			horizontal translation	Through questioning	
SWBAT Describe the characteristics of a function with varying levels of precision, depending on the function representationwill then switch with a peer and try to write the new expression for the functionidentify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology			of 2 units. Students	students will be able to	
(3 days)by brain bescribe the characteristics of a function with varying levels of precision, depending on the function representationa peer and try to write the new expression for the functiongraphical, numerical, analytical, and verbal representations or construct a model with and without technology		SWBAT Describe the	will then switch with	identify information from	
(3 days) (3		characteristics of a	a peer and try to	graphical, numerical,	
(3 days) (3		function with varving	write the new	analytical, and verbal	
(3 days) depending on the function function transformation. a model with and without technology		levels of precision	expression for the	representations or construct	
function representation transformation. technology	(3 days)	depending on the	function	a model with and without	
		function representation	transformation.	technology	
and available Students then have		and availabla	Students then have		
mathematical tools time to discuss the		mathematical tools	time to discuss the		
new function			new function		

		overagions and	Clasura	
		adjust as needed.	Ciosure	
		Students are given graphs of polynomial	Circulate and monitor	2.A
	SWBAT Identify	and rational functions. Students are then asked to graph a	student progress as they are working on classwork.	3.C
1.13 Function Model Selection and Assumption	graphical, numerical, analytical, and verbal representations to answer a question or construct a model,	transformation of one of the provided graphs, such as a vertical dilation by a factor of 3 and a	Have students complete problems at the board.	
Articulation (2 days)	with and without technology. SWBAT supports conclusions or choices with a logical rationale or appropriate data.	horizontal translation of 2 units. Students will then switch with a peer and try to write the new expression for the function transformation. Students then have time to discuss the	Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations or construct a model with and without technology	
		expressions and adjust as needed.	Closure	
	SWBAT Construct	Students are given graphs of polynomial and rational functions, Students	Circulate and monitor student progress as they are working on classwork.	1.C 3.B
1.14 Function Model Construction and	transformations, using compositions, inverses, or regressions, that may be useful in modeling contexts, criteria, or	are then asked to graph a transformation of one of the provided graphs, such as a vertical dilation by a	Have students complete problems at the board.	
Application	data, with and without technology.	factor of 3 and a horizontal translation of 2 units. Students will then switch with	Through questioning students will be able to identify information from	
(3 days)	SWBAT Apply numerical results in a given mathematical or applied context.	a peer and try to write the new expression for the function transformation. Students then have time to discuss the	analytical, and verbal representations or construct a model with and without technology	

new function	Closure	
expressions and		
adjust as needed.		

MA.9-12.2.1.A.1	A sequence is a function from the whole numbers to the real numbers. Consequently, the graph of a sequence consists of discrete points instead of a curve.
MA.9-12.2.1.A.2	Successive terms in an arithmetic sequence have a common difference, or constant rate of change.
MA.9-12.2.1.A.3	The general term of an arithmetic sequence with a common difference <i>d</i> is denoted by a_n and is given by $a_n = a_0 + dn$, where a_0 is the initial value, or by $a_n = a_k + d(n - k)$, where a_k is the <i>k</i> th term of the sequence.
MA.9-12.2.1.B.1	Successive terms in a geometric sequence have a common ratio, or constant proportional change.
MA.9-12.2.1.B.2	The general term of a geometric sequence with a common ratio r is denoted by g_n and is given by $g_n = g_0 r^n$, where g_0 is the initial value, or by $g_n = g_k r^{(n-k)}$ where g_k is the <i>k</i> th term of the sequence.
MA.9-12.2.1.B.3	Increasing arithmetic sequences increase equally with each step, whereas increasing geometric sequences increase by a larger amount with each successive step.
MA.9-12.2.2.A.1	Linear functions of the form $f(x) = b + mx$ are similar to arithmetic sequences of the form $a_n = a_0 + dn$, as both can be expressed as an initial value (<i>b</i> or a_0) plus repeated addition of a constant rate of change, the slope (<i>m</i> or <i>d</i>).
MA.9-12.2.2.A.2	Similar to arithmetic sequences of the form $a_n = a_k + d(n - k)$, which are based on a known difference, d , and a k th term, linear functions can be expressed in the form $f(x) = y_i + m(x - x_i)$ based on a known slope, m , and a point, (x_i, y_i) .
MA.9-12.2.2.A.3	Exponential functions of the form $f(x) = ab^x$ are similar to geometric sequences of the form $g_n = g_0 r^n$, as both can be expressed as an initial value $(a \text{ or } g_0)$ times repeated multiplication by a constant proportion $(b \text{ or } r)$.
MA.9-12.2.2.A.4	Similar to geometric sequences of the form $g_n = g_k r^{(n-k)}$, which are based on a known ratio, r , and a <i>k</i> th term, exponential functions can be expressed in the form $f(x) = y_i r^{(x-x_i)}$ based on a known ratio, r , and a point, (x_i, y_i) .
MA.9-12.2.2.A.5	Sequences and their corresponding functions may have different domains.
MA.9-12.2.2.B.1	Over equal-length input-value intervals, if the output values of a function

	change at constant rate, then the function is linear; if the output values of a function change proportionally, then the function is exponential.
MA.9-12.2.2.B.2	Linear functions of the form $f(x) = b + mx$ and exponential functions of the form $f(x) = ab^x$ can both be expressed analytically in terms of an initial value and a constant involved with change. However, linear functions are based on addition, while exponential functions are based on multiplication.
MA.9-12.2.2.B.3	Arithmetic sequences, linear functions, geometric sequences, and exponential functions all have the property that they can be determined by two distinct sequence or function values.
MA.9-12.2.3.A.1	The general form of an exponential function is $f(x) = ab^x$, with the initial value <i>a</i> , where $a \neq 0$, and the base <i>b</i> , where $b > 0$, and $b \neq 1$. When $a > 0$ and $b > 1$, the exponential function is said to demonstrate exponential growth. When $a > 0$ and $0 < b < 1$, the exponential function is said to demonstrate exponential decay.
MA.9-12.2.3.A.2	When the natural numbers are input values in an exponential function, the input value specifies the number of factors of the base to be applied to the function's initial value. The domain of an exponential function is all real numbers.
MA.9-12.2.3.A.3	Because the output values of exponential functions in general form are proportional over equal-length input-value intervals, exponential functions are always increasing or always decreasing, and their graphs are always concave up or always concave down. Consequently, exponential functions do not have extrema except on a closed interval, and their graphs do not have points of inflection.
MA.9-12.2.3.A.4	If the values of the additive transformation function $g(x) = f(x) + k$ of any function f are proportional over equal-length input-value intervals, then f is exponential.
MA.9-12.2.3.A.5	For an exponential function in general form, as the input values increase or decrease without bound, the output values will increase or decrease without bound or will get arbitrarily close to zero. That is, for an exponential function in general form, $lim [x \to \pm \infty] ab^x = \infty$, $lim [x \to \pm \infty] ab^x = -\infty$, $lim [x \to \pm \infty] ab^x = 0$.
MA.9-12.2.4.A.1	The product property for exponents states that $b^{m}b^{n} = b^{(m + n)}$. Graphically, this property implies that every horizontal translation of an exponential function, $f(x) = b^{(x + k)}$, is equivalent to a vertical dilation, $f(x) = b^{(x + k)} = b^{x}b^{k} = ab^{x}$, where $a = b^{k}$.
MA.9-12.2.4.A.2	The power property for exponents states that $(b^{m})^{n} = b^{(mn)}$. Graphically, this property implies that every horizontal dilation of an exponential function, $f(x) = b^{(ex)}$, is equivalent to a change of the base of an exponential function, $f(x) = (b^{c})^{x}$, where b^{c} is a constant and $c \neq 0$.
MA.9-12.2.4.A.3	The negative exponent property states that $b^{-n} = 1/b^n$.
MA.9-12.2.4.A.4	The value of an exponential expression involving an exponential unit fraction, such as $b^{(1/k)}$ where k is a natural number, is the kth root of b, when

	it exists.
MA.9-12.2.5.A.1	Exponential functions model growth patterns where successive output values over equal-length input-value intervals are proportional. When the input values are whole numbers, exponential functions model situations of repeated multiplication of a constant to an initial value.
MA.9-12.2.5.A.2	A constant may need to be added to the dependent variable values of a data set to reveal a proportional growth pattern.
MA.9-12.2.5.A.3	An exponential function model can be constructed from an appropriate ratio and initial value or from two input-output pairs. The initial value and the base can be found by solving a system of equations resulting from the two input-output pairs.
MA.9-12.2.5.A.4	Exponential function models can be constructed by applying transformations to $f(x) = ab^x$ based on characteristics of a contextual scenario or data set.
MA.9-12.2.5.A.5	Exponential function models can be constructed for a data set with technology using exponential regressions.
MA.9-12.2.5.A.6	The natural base <i>e</i> , which is approximately 2.718, is often used as the base in exponential functions that model contextual scenarios.
MA.9-12.2.5.B.1	For an exponential model in general form $f(x) = ab^x$, the base of the exponent, <i>b</i> , can be understood as a growth factor in successive unit changes in the input values and is related to a percent change in context.
MA.9-12.2.5.B.2	Equivalent forms of an exponential function can reveal different properties of the function. For example, if <i>d</i> represents number of days, then the base of $f(d) = 2^d$ indicates that the quantity increases by a factor of 2 every day, but the equivalent form $f(d) = 2^{7(d^7)}$ indicates that the quantity increases by a factor of 2^7 every week.
MA.9-12.2.5.B.3	Exponential models can be used to predict values for the dependent variable, depending on the contextual constraints on the domain.
MA.9-12.2.6.A.1	Two variables in a data set that demonstrate a slightly changing rate of change can be modeled by linear, quadratic, and exponential function models.
MA.9-12.2.6.A.2	Models can be compared based on contextual clues and applicability to determine which model is most appropriate.
MA.9-12.2.6.B.1	A model is justified as appropriate for a data set if the graph of the residuals of a regression, the residual plot, appear without pattern.
MA.9-12.2.6.B.2	The difference between the predicted and actual values is the error in the model. Depending on the data set and context, it may be more appropriate to have an underestimate or overestimate for any given interval.
MA.9-12.2.7.A.1	If f and g are functions, the composite function $f \circ g$ maps a set of input values to a set of output values such that the output values of g are used as input values of f . For this reason, the domain of the composite function is

	restricted to those input values of g for which the corresponding output value is in the domain of f. $(f \circ g)(x)$ can also be represented as $f(g(x))$.
MA.9-12.2.7.A.2	Values for the composite function $f \circ g$ can be calculated or estimated from the graphical, numerical, analytical, or verbal representations of f and g by using output values from g as input values for f .
MA.9-12.2.7.A.3	The composition of functions is not commutative; that is, $f \circ g$ and $g \circ f$ are typically different functions; therefore, $f(g(x))$ and $g(f(x))$ are typically different values.
MA.9-12.2.7.A.4	If the function $f(x) = x$ is composed with any function g , the resulting composite function is the same as g ; that is, $g(f(x)) = f(g(x)) = g(x)$. The function $f(x) = x$ is called the identity function. When composing two functions, the identity function acts in the same way as 0, the additive identity, when adding two numbers and 1, the multiplicative identity, when multiplying two numbers.
MA.9-12.2.7.B.1	Function composition is useful for relating two quantities that are not directly related by an existing formula.
MA.9-12.2.7.B.2	When analytic representations of the functions f and g are available, an analytic representation of $f(g(x))$ can be constructed by substituting $g(x)$ for every instance of x in f .
MA.9-12.2.7.B.3	A numerical or graphical representation of $f \circ g$ can often be constructed by calculating or estimating values for $(x, f(g(x)))$.
MA.9-12.2.7.C.1	Functions given analytically can often be decomposed into less complicated functions. When properly decomposed, the variable in one function should replace each instance of the function with which it was composed.
MA.9-12.2.7.C.2	An additive transformation of a function, f , that results in vertical and horizontal translations can be understood as the composition of $g(x) = x + k$ with f .
MA.9-12.2.7.C.3	A multiplicative transformation of a function, f , that results in vertical and horizontal dilations can be understood as the composition of $g(x) = kx$ with f .
MA.9-12.2.8.A.1	On a specified domain, a function, f , has an inverse function, or is invertible, if each output value of f is mapped from a unique input value. The domain of a function may be restricted in many ways to make the function invertible.
MA.9-12.2.8.A.2	An inverse function can be thought of as a reverse mapping of the function. An inverse function, f^{-1} , maps the output values of a function, f , on its invertible domain to their corresponding input values; that is, if $f(a) = b$, then $f^{-1}(b) = a$. Alternately, on its invertible domain, if a function consists of input-output pairs (a, b) , then the inverse function consists of input- output pairs (b, a) .
MA.9-12.2.8.B.1	The composition of a function, f , and its inverse function, f^{-1} , is the identity function; that is, $f(f^{-1}(x)) = f^{-1}(f(x)) = x$.

MA.9-12.2.8.B.2	On a function's invertible domain, the function's range and domain are the inverse function's domain and range, respectively. The inverse of the table of values of $y = f(x)$ can be found by reversing the input-output pairs; that is, (a, b) corresponds to (b, a) .
MA.9-12.2.8.B.3	The inverse of the graph of the function $y = f(x)$ can be found by reversing the roles of the <i>x</i> - and <i>y</i> -axes; that is, by reflecting the graph of the function over the graph of the identity function $h(x) = x$.
MA.9-12.2.8.B.4	The inverse of the function can be found by determining the inverse operations to reverse the mapping. One method for finding the inverse of the function f is reversing the roles of x and y in the equation $y = f(x)$, then solving for $y = f^{-1}(x)$.
MA.9-12.2.8.B.5	In addition to limiting the domain of a function to obtain an inverse function, contextual restrictions may also limit the applicability of an inverse function.
MA.9-12.2.9.A.1	The logarithmic expression $log_b c$ is equal to, or represents, the value that the base <i>b</i> must be exponentially raised to in order to obtain the value <i>c</i> . That is, $log_b c = a$ if and only if $b^a = c$, where <i>a</i> and <i>c</i> are constants, $b > 0$, and $b \neq 1$. (when the base of a logarithmic expression is not specified, it is understood as the common logarithm with a base of 10)
MA.9-12.2.9.A.2	The values of some logarithmic expressions are readily accessible through basic arithmetic while other values can be estimated through the use of technology.
MA.9-12.2.9.A.3	On a logarithmic scale, each unit represents a multiplicative change of the base of the logarithm. For example, on a standard scale, the units might be 0, 1, 2,, while on a logarithmic scale, using logarithm base 10, the units might be 10° , 10^{1} , 10^{2} ,
MA.9-12.2.10.A.1	The general form of a logarithmic function is $f(x) = a \log_b x$, with base <i>b</i> , where $b > 0$, $b \neq 1$, and $a \neq 0$.
MA.9-12.2.10.A.2	The way in which input and output values vary together have an inverse relationship in exponential and logarithmic functions. Output values of general-form exponential functions change proportionately as input values increase in equal-length intervals. However, input values of general-form logarithmic functions change proportionately as output values increase in equal-length intervals. Alternately, exponential growth is characterized by output values changing multiplicatively as input values change additively, whereas logarithmic growth is characterized by output values changing additively as input values change multiplicatively.
MA.9-12.2.10.A.3	$f(x) = log_b x$ and $g(x) = b^x$, where $b > 0$ and $b \neq 1$, are inverse functions. That is, $g(f(x)) = f(g(x)) = x$.
MA.9-12.2.10.A.4	The graph of the logarithmic function $f(x) = log_b x$, where $b > 0$ and $b \neq 1$, is a reflection of the graph of the exponential function $g(x) = b^x$, where $b > 0$ and $b \neq 1$, over the graph of the identity function $h(x) = x$.
MA.9-12.2.10.A.5	If (s, t) is an ordered pair of the exponential function $g(x) = b^x$, where $b > 0$

	and $b \neq 1$, then (t, s) is an ordered pair of the logarithmic function $f(x) = log_b x$, where $b > 0$ and $b \neq 1$.
MA.9-12.2.11.A.1	The domain of a logarithmic function in general form is any real number greater than zero, and its range is all real numbers.
MA.9-12.2.11.A.2	Because logarithmic functions are inverses of exponential functions, logarithmic functions are also always increasing or always decreasing, and their graphs are either always concave up or always concave down. Consequently, logarithmic functions do not have extrema except on a closed interval, and their graphs do not have points of inflection.
MA.9-12.2.11.A.3	The additive transformation function $g(x) = f(x + k)$, where $k \neq 0$, of a logarithmic function f in general form does not have input values that are proportional over equal-length output-value intervals. However, if the input values of the additive transformation function, $g(x) = f(x + k)$, of any function f are proportional over equal-length output value intervals, then f is logarithmic.
MA.9-12.2.11.A.4	With their limited domain, logarithmic functions in general form are vertically asymptotic to $x = 0$, with an end behavior that is unbounded. That is, for a logarithmic function in general form, $\lim [x \to 0^+] a \log_b x = \pm \infty$ and $\lim [x \to \infty] a \log_b x = \pm \infty$.
MA.9-12.2.12.A.1	The product property for logarithms states that $log_b(xy) = log_b x + log_b y$. Graphically, this property implies that every horizontal dilation of a logarithmic function, $f(x) = log_b(kx)$, is equivalent to a vertical translation, $f(x) = log_b(kx) = log_b k + log_b x = a + log_b x$, where $a = log_b k$.
MA.9-12.2.12.A.2	The power property for logarithms states that $log_b x^n = n log_b x$. Graphically, this property implies that raising the input of a logarithmic function to a power, $f(x) = log_b x^k$, results in a vertical dilation, $f(x) = log_b x^k = k log_b x$.
MA.9-12.2.12.A.3	The change of base property for logarithms states that $log_b x = (log_a x)/(log_a b)$, where $a > 0$ and $a \neq 1$. This implies that all logarithmic functions are vertical dilations of each other.
MA.9-12.2.12.A.4	The function $f(x) = \ln x$ is a logarithmic function with the natural base e ; that is, $\ln x = \log_e x$.
MA.9-12.2.13.A.1	Properties of exponents, properties of logarithms, and the inverse relationship between exponential and logarithmic functions can be used to solve equations and inequalities involving exponents and logarithms.
MA.9-12.2.13.A.2	When solving exponential and logarithmic equations found through analytical or graphical methods, the results should be examined for extraneous solutions precluded by the mathematical or contextual limitations.
MA.9-12.2.13.A.3	Logarithms can be used to rewrite expressions involving exponential functions in different ways that may reveal helpful information. Specifically, $b^x = c^{(log_c b)(x)}$.

MA.9-12.2.13.B.1	The function $f(x) = ab^{(x - h)} + k$ is a combination of additive transformations of an exponential function in general form. The inverse of $y = f(x)$ can be found by determining the inverse operations to reverse the mapping.
MA.9-12.2.13.B.2	The function $f(x) = a \log_b (x - h) + k$ is a combination of additive transformations of a logarithmic function in general form. The inverse of $y = f(x)$ can be found by determining the inverse operations to reverse the mapping.
MA.9-12.2.14.A.1	Logarithmic functions are inverses of exponential functions and can be used to model situations involving proportional growth, or repeated multiplication, where the input values change proportionally over equal- length output-value intervals. Alternately, if the output value is a whole number, it indicates how many times the initial value has been multiplied by the proportion.
MA.9-12.2.14.A.2	A logarithmic function model can be constructed from an appropriate proportion and a real zero or from two input-output pairs.
MA.9-12.2.14.A.3	Logarithmic function models can be constructed by applying transformations to $f(x) = a \log_b x$ based on characteristics of a context or data set.
MA.9-12.2.14.A.4	Logarithmic function models can be constructed for a data set with technology using logarithmic regressions.
MA.9-12.2.14.A.5	The natural logarithm function is often useful in modeling real-world phenomena.
MA.9-12.2.14.A.6	Logarithmic function models can be used to predict values for the dependent variable.
MA.9-12.2.15.A.1	In a semi-log plot, one of the axes is logarithmically scaled. When the <i>y</i> -axis of a semi-log plot is logarithmically scaled, data or functions that demonstrate exponential characteristics will appear linear.
MA.9-12.2.15.A.2	An advantage of semi-log plots is that a constant never needs to be added to the dependent variable values to reveal that an exponential model is appropriate.
MA.9-12.2.15.B.1	Techniques used to model linear functions can be applied to a semi-log graph.
MA.9-12.2.15.B.2	For an exponential model of the form $y = ab^x$, the corresponding linear model for the semi-log plot is $y = (log_n b)x + log_n a$, where $n > 0$ and $n \neq 1$. Specifically, the linear rate of change is $log_n b$, and the initial linear value is $log_n a$.
MA.9-12.I	Functions, Graphs, and Limits

Suggested Modifications for Special Education, ELL and Gifted Students

• Anchor charts to model strategies.

- Review Algebra concepts to ensure students have the information needed to progress in understanding.
- Pre-teach pertinent vocabulary.
- Provide reference sheets that list formulas, step-by-step procedures, theorems, and modeling of strategies.
- Word wall with visual representations of mathematical terms.
- Teacher modeling of thinking processes involved in solving, graphing, and writing equations.
- Introduce concepts embedded in real-life context to help students relate to the mathematics involved.
- Record formulas, processes, and mathematical rules in reference notebooks.
- Graphing calculator to assist with computations and graphing of trigonometric functions.
- Utilize technology through interactive sites to represent nonlinear data.
- Graphic organizers to help students interpret the meaning of terms in an expression or equation in context.
- Translation dictionary.
- Sentence stems to provide additional language support for ELL students.

Suggested Technological Innovations/Use

Students find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks of personal and organizational technology applications, and they take action to prevent or mitigate these risks.

Example: Students will be introduced to the math instructional program, Larson Math, as well as digital platforms such as Google Classroom, Meet, and Jamboard. Students will make sound judgments about the use of specific tools, such as Graphing Calculators and Geogebra to explore and deepen their understanding of the concepts related to trigonometric ratios and functions, probability, data analysis, and statistics.

Model interdisciplinary thinking to expose students to other disciplines. Social Studies and ELA Literacy Connection:

Name of Task: Americans' spending: NJSLS: 6.1.12.HistoryCC.16.b, 6.2.12.EconGE.5.a

From July 1998 to July 1999, Americans' spending rose from 5.82 trillion dollars to 6.20 trillion dollars

a. Let x = 0 represent July 1998, x = 1 represent August 1998, ..., and x = 12 represent July 1999. Write a linear equation for Americans' spending in terms of the month x

b. Use the equation in (a) to predict Americans' spending in July 2002.

- c. Based on the model created in (a) when would the aggregate expenditure exceed 10 trillion dollars?
- d. What part of the US GDP is spent by the Americans in 2013?

Name of Task: Publishing Cost:

A publishing company estimates that the average cost (in dollars) for one copy of a new scenic calendar it plans to produce can be approximated by the function

C(x) = (2.25x + 275)/x

2.25 x+

Where *x* is the number of calendars printed.

a. Find the average cost per calendar when the company prints 100 calendars.

b. Identify the domain and range of this function.

c. After analyzing the function, Alex said that this company should not be allowed to publish zero calendars. As a result, the company has no option to shut down and go out of business. Write an argument to support or reject Alex's conclusion.

Science Connection:

Name of Task: Myoglobin and Hemoglobin: NJSLS: HS-LS1-2; HS-LS1-4

Myoglobin and hemoglobin are oxygen-carrying molecules in the human body. Hemoglobin is found inside red blood cells, which flow from the lungs to the muscles through the

bloodstream. Myoglobin is found in muscle cells. The function y = M(p) = p/(1 + p) calculates the fraction of myoglobin saturated with oxygen at a given presure *p* Torrs. For example, at a pressure of 1 Torr, M(1) = 0.5, which means half of the myoglobin (i.e. 50%) is oxygen saturated. (Note: More precisely, you need to use something called the "partial pressure", but the distinction is not important for this problem.) Likewise, the function calculates the fraction of hemoglobin saturated with oxygen at a given pressure *p*. [UW]

a. The graphs of M(P) and H(P) are given here on the domain

0≤p≤100

Which is which?

b. If the pressure in the lungs is 100 Torrs, what is the level of oxygen saturation of the hemoglobin in the

lungs?

c. The pressure in an active muscle is 20 Torrs. What is the level of oxygen saturation of myoglobin in an active muscle? What is the level of hemoglobin in an active muscle?

d. Define the efficiency of oxygen transport at a given pressure p to be M(p) - H(p). What is the oxygen transport efficiency at 20 Torrs? At 40 Torrs? At 60 Torrs? Sketch the graph of M(p) - H(p); are there conditions under which transport efficiency is maximized (explain)?

Business Connection :

Name of Task: Minimize the metal in a can: NJSLS: 9.1.12.A.4; W.11-12.1

A manufacturer wants to manufacture a metal can that holds 1000 cm^3 of oil. The can is in the shape of a right cylinder with a radius *r* and height *h*. Assume the thickness of the material used to make the metal can is negligible.

For each question, include correct units of measurement and round your answers to the nearest tenth. Using your knowledge of volume and surface area of a right cylinder, write a function S(r) that represents the surface area of the cylindrical can in terms of the radius, r, of its base. Show in detail your algebraic thinking.

1. Sketch the graph of S(r) and show key features of the graph. State any restriction on the value of r so that it represents the physical model of the can.

2. What dimensions will minimize the quantity of metal needed to manufacture the cylindrical can? Show in detail your mathematical solution.

3. Calculate the minimum value of the function S(r) and interpret the result in the context of the physical model. Show the mathematical steps you used to obtain the answer.

Name of Task: Chemco Manufacturing: NJSLS: 9.1.12.A.4; W.11-12.1

Chemco Manufacturing estimates that its profit *P* in hundreds of dollars is $P = -4x^2+10-30 x$ is the number of units produced in thousands.

a. How many units must be produced to obtain the maximum profit?

b. Graph the profit function and identify its vertex.

c. An increase in productivity increased profit by \$7 at each quantity sold. What kind of a transformation would model this situation? Show your work graphically and algebraically.

d. A decrease in marginal cost lead to a 4 units increase in the optimum level of production. What kind of a transformation would model this situation? Show your work graphically and algebraically.

Table of Contents Unit 2 Exponential and Logarithmic Functions

Content Area:MathematicsCourse(s):APPreCalculusTime Period:2nd Marking PeriodLength:7 weeksStatus:Not Published

Section Title

Unit 2: Exponential and Logarithmic Functions

Enduring Understandings

 \circ Recognize, write, and find nth terms of arithmetic and geometric sequences.

• Use arithmetic and geometric sequences to model real world problems.

• Describe similarities and differences between linear and exponential functions.

• Construct functions that are comparable to arithmetic and geometric sequences.

- o Solve real world applications using arithmetic and geometric sequences.
- o Identify key characteristics of exponential functions.
- o Use properties of exponents to simplify and evaluate expressions.
- Apply properties of logarithms to evaluate expressions and graph functions.
- \circ Understand the characteristics and effects of constants in the exponential model y = ab^x.
- Apply exponential models about data sets in contextual scenarios and construct a model.
- Construct exponential function models using regression equations and technology.
- Evaluate the composition of two or more functions for given values.
- o Rewrite a given function as a composition of two ore more functions
- o Determine the inverse of a function on an invertible domain.
- o Identify key characteristics of logarithmic functions
- o Rewrite logarithmic expressions in equivalent forms.
- o Solve exponential and logarithmic equations and inequalities.
- \circ Construct the inverse of exponential functions.

Summary of the Unit

In Unit 2, students will build an understanding of exponential and logarithmic functions. Exponential and logarithmic function models are widespread in the natural and social sciences. Exponential functions are key to modeling population growth, radioactive decay, interest rates, and the amount of medication in a patient. Logarithmic functions are useful in modeling sound intensity and frequency, the magnitude of earthquakes, the pH scale in chemistry, and the working memory in humans. The study of these two function types touches careers in business, medicine, chemistry, physics, education, and geography.

Essential Questions

- How can I make a single model that merges the interest I earn from my bank with the taxes that are due so I can know how much I will have in the end?
- How can we adjust the scale of distance for a model of planets in the solar system so the relationships among the planets are easier to see?
- If different functions can be used to model data, how do we pick which one is best?
- Why is the number e important?
- What are the key characteristics of an exponential function?
- What is a composite function?
- How do we create the composition of two or more functions?
- What do we know about the domain of composite functions?
- How do we decompose a function?
- How can you find the inverse of a relation or function?
- How can you determine whether the inverse of a function is a function?

- How do I use exponential functions to model exponential behavior?
- What is the relationship between an exponential expression and a logarithm?
- How can the properties of exponents be used to rewrite exponential expressions?

Summative Assessment and/or Summative Criteria Required District/State Assessments

- SGO Pre Assessment
- SGO Post Assessment

Suggested Formative/Summative Classroom Assessments

- Describe Learning Vertically
- Identify Key Building Blocks
- Make Connections (between and among crucial building blocks)
- Short/Extended Constructed Response Items
- Multiple-Choice Items (where multiple answer choices may be correct)
- Drag and Drop Items
- Use of Equation Editor
- Quizzes
- Journal Entries/Reflections/Quick-Writes
- Accountable talk
- Projects
- Portfolio
- Observation
- Graphic Organizers/ Concept Mapping

- Presentations
- Teacher-Student and Student-Student Conferencing
- AP Classroom Assessments created with specific sections outlined.
- WebAssign Problem Sets <u>WebAssign Instructor Help</u>
- Homework
- Students will take formal assessments, such as tests and quizzes, to assess knowledge of concepts learned throughout the unit.
- Students will also demonstrate mastery through various assessment criteria included in the unit such as do nows, exit slips, graded classwork activities and assignments, and/or projects.

Resources

- AP Daily Videos: Section 2.1 2.2
- AP Daily Videos: Section 2.3 2.5
- AP Daily Videos: Section 2.6
- AP Daily Videos: Section 2.7 2.8
- AP Daily Videos: Section 2.9 2.12
- AP Daily Videos: Section 2.13
- AP Daily Videos: Section 2.14-2.15
- AP Precalculus Course Overview: https://apcentral.collegeboard.org/courses/ap-precalculus/course
- AP Precalculus Course and Exam Description: <u>https://apcentral.collegeboard.org/media/pdf/apprecalculus-course-and-exam-description.pdf</u>
- AP Precalculus Practice Exam: <u>https://apcentral.collegeboard.org/media/pdf/ap-precalculus-practice-exam-multiple-choice-section.pdf</u>
- AP Precalculus Classroom Resources: <u>https://apcentral.collegeboard.org/courses/ap-precalculus/classroom-resources</u>
- Classpad.net (Casio): <u>https://classpad.net/us/</u>

- Desmos: <u>https://www.desmos.com/</u>
- Geogebra: <u>https://www.geogebra.org/?lang=en</u>
- Math Open Reference: <u>https://www.mathopenref.com/</u>
- TI Education (Texas Instruments): <u>https://education.ti.com/en</u>
- WolframAlpha: <u>https://www.wolframalpha.com/</u>
- Wolfram MathWorld: <u>https://mathworld.wolfram.com/</u>
- Khan Academy: <u>https://www.khanacademy.org/math/precalculus</u>
- Digital Mathematics Word Wall: <u>http://www.mathwords.com/index_adv_alg_precal.htm</u>
- Extra Notes for Pre-Calculus Content: <u>https://sites.google.com/a/evergreenps.org/ms-griffin-s-math-classes/updates</u>
- Review Documents for Pre-Calculus: <u>https://sites.google.com/site/dgrahamcalculus/trigpre-calculus/trig-pre-calculus-worksheets</u>
- Pre-Calculus IXL Topics and Resources: <u>https://www.ixl.com/math/precalculus</u>
- Classroom Challenges to Support Teachers in Formative Assessments: <u>http://map.mathshell.org/materials/lessons.php?gradeid=24</u>
- Applications of Function Models: <u>https://www.ck12.org/algebra/Applications-of-Function-Models/lesson/Applications-of-Function-Models-BSC-ALG/?referrer=featured_content</u>
- Statistics Education Web (STEW). <u>http://www.amstat.org/education/STEW/</u>
- The Data and Story Library (DASL). <u>http://lib.stat.cmu.edu/DASL/</u>
- <u>WebAssign Instructor Resources</u>
- <u>WebAssign Student Resources</u>
- Cengage Learning: PreCalculus with Limits A Graphing Approach, Sixth Edition

Topic/Selection	General	Instructional	Benchmarks/Assessments	Standards
Timeframe	Objectives	Activities		
2.1 - Changes in	SWBAT	Students will identify	Circulate and monitor	2.1.A &
Arithmetic and	recognize, write,	the common difference	student progress as they are	2.1.B
Geometric	and find nth terms	and first term of	working on classwork.	
Sequences	of arithmetic and	arithmetic sequences		
(2 days)	geometric	written in a variety of		
(2 ddys)	sequences.	write a rule	Have students complete	
	SWBAT use	write a rule.	problems at the board.	
	arithmetic and			
	geometric			
	sequences to	Students will model	Through questioning	
	model real-world	arithmetic sequences	students will be able to	
	problems.	from contextual and	write rules for arithmetic	
		scenarios	and geometric sequences	
		section 105.	and construct a model with	
			and without technology	
		Students will identify		
		the common ratio and	Closure	
		the first term of		
		geometric sequences		
		wave and use that		
		information to write a		
		rule.		
		Students will model		
		geometric sequences		
		from contextual and		
		mathematical		
		scenarios.		

2.2 - Changes in	SWBAT describes	Students will write	Circulate and monitor	
Linear and	similarities and	linear functions and	student progress as they are	
Exponential	differences	understand how it is	working on classwork.	2.2A &
Functions	between linear	similar to an explicit		2.2.B
	and exponential	rule of an arithmetic		
(2 days)	functions.	sequence.		
			Have students complete	
			problems on the board.	
	SWDAT	Students will write		
	SWDA1	students will write		
	functions that are	functions and	Through questioning	
	comparable to	understand how it is	students will be able to	
	arithmetic and	similar to an explicit	identify similarities and	
	geometric	rule of geometric	differences between	
	sequences.	sequences.	arithmetic sequences and	
	_		linear functions and	
			geometric sequences and	
		Standanta mili	exponential functions.	
	SWBAI to solve	Sudenis Will	Sudents will also be able to	
	applications using	sequences and their	without technology	
	arithmetic and	corresponding	without teenhology	
	geometric	functions may have		
	sequences.	different domains.		
	1		Closure	
		Q41		
		Students will model	Ouiz 2.1 - 2.2	
		arithmetic sequences	2	
		from mathematical and		
		contextual scenarios.		

2.3 - Exponential Functions (2 days)	SWBAT to identify key characteristics of exponential functions.	Students will investigate the basic behaviors of exponential functions and their graphs. Students will analyze exponential graphs for key characteristics, such as domain, range, end behavior, continuity, symmetry, asymptotes, and intervals of increase and decrease.	Circulate and monitor student progress as they are working on classwork. Have students complete problems on the board. Through questioning students will be able to identify key characteristics of exponential functions.	2.3.A
2.4 - Exponential Function Manipulation (2 days)	SWBAT use properties of exponents to simplify and evaluate expressions. SWBAT apply properties of logarithms to evaluate expressions and graph functions.	Students will simplify functions using rules of exponents. Students will apply transformations of functions to exponential functions. Students will graph these functions and identify key characteristics.	Circulate and monitor student progress as they are working on classwork. Have students complete problems on the board. Through questioning students will be able to apply transformations to graph exponential functions and analyze key characteristics.	2.4.A
	SWBAT understand the characteristics and effects of constants in the exponential model $y = ab^x$.		Closure	
2.5 - Exponential Function Context and	SWBAT construct a model for scenarios involving	Students will identify if a situation or equation represents exponential growth or	Circulate and monitor student progress as they are working on classwork.	2.5.A & 2.5.B

Data Modeling	proportional	decay.		
(2 days)	output values		Have students complete	
(2 days)	scenarios		problems at the board.	
	SWBAT apply exponential models about data sets in contextual scenarios.	Students will write equations for exponential models from an appropriate ratio and initial value or from two input output pairs by solving a system of equations.	Through questioning students will be able to construct a model for scenarios involving exponential functions, apply	
	SWBAT construct exponential function models using regression equations and technology.	Students will construct exponential function models for a data set with technology using exponential regressions.	exponential models about data sets ,and construct exponential function models with and without technology.	
		Students will apply exponential models to answer questions about a data set or contextual scenario.		
2.6 - Competing Function Model Validation	SWBAT use contextual clues to determine an appropriate model and find an	Students will find appropriate residuals given a scenario.	Circulate and monitor student progress as they are working on classwork.	2.6.A & 2.6.B
(5 days)	appropriate regression model for a data set.	Students will construct regression equations given a scenario.	Have students complete problems at the board.	
	SWBAT recognize a correct regression model using the graph of residuals.		Through questioning students will be able to identify information from graphical, numerical, analytical, and verbal representations to answer a question or construct a model, with or without	

	SWBAT find the		technology.	
	residual errors of			
	a model and			
	analyze the			
	findings.		Closure	
			Quiz 2 3 - 2 6	
27-	SWBAT evaluate	Students will perform	Circulate and monitor	27A&
Composition of	the composition of	function operations	student progress as they are	2.7.R &
Functions (3	two or more	runetion operations.	working on classwork	2.7.D
days)	functions for		working on classwork.	
uuys)	given values			
	given values.	Students will find a		
		composition of one	Have students complete	
		function with another	problems at the board.	
	SWBAT construct	function.	-	
	a representation of			
	the composition of			
	two or more		Through questioning	
	functions.	Students will rewrite a	students will be able to	
		given function as a	construct new functions	
		composite of two or	using transformations and	
		more functions.	compositions that may be	
	SWBAT rewrite a		useful in modeling contexts,	
	given function as		criteria, or data, with and	
	a composition of	C 1 1 11	without technology.	
	two ore more	Students will		
	functions	recognize that the		
		composition of	CI	
		functions is not	Closure	
		commutative.		
1		1	1	1

2.8 - Inverse	SWBAT to	Students will verify	Circulate and monitor	2.8.A &
Functions (5	determine the	that two functions are	student progress as they are	2.8.B
days)	input - output	inverses both	working on classwork.	
	pairs of the	algebraically and		
	inverse of a	graphically.		
	function.		Have students complete	
			problems at the board.	
		Students will use the	1	
	SWBAT	horizontal line test to		
	determine the	determine if the	Through questioning	
	inverse of a	functions are one to	students will be able to	
	function on an	one.	solve equations and	
	domain		inequalities represented	
	domani.		analytically with and	
		Students will find	without technology,	
		inverse functions both		
		informally and		
		algeoraically.	Closure	
		Students will use	Quiz 2 7 2 8	
		function notation to	Quiz 2.7 - 2.8	
		scenarios		
		5001101105.		
		Students will analyze		
		and choose the		
		find an inverse of a		
		relation or function.		
2.9 -	SWBAT to	Students will apply the	Circulate and monitor	2.9.A
Logarithmic	evaluate	properties of	student progress as they are	
Expressions (2	logarithmic	logarithms to evaluate	working on classwork.	
days)	expressions.	expressions with and		
		without technology.		
			Have students complete	
			problems at the board.	
		Students will use		
		properties of		
		exponents and	Through questioning	
		and evaluate	students will be able to	
			express functions,	

		expressions.	equations, or expressions in analytically equivalent forms.	
		Students will understand that each unit of the logarithmic scale is a multiplicative change of base 10,	Closure	
2.10 - Inverses of Exponential Functions (2 days)	SWBAT construct representations of the inverse of an exponential function with an initial value of 1.	Students will understand the way in which input and output values vary together have an inverse relationship in exponential and logarithmic functions.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board.	2.10.A
		Students will show the compositions of exponential functions and log functions are inverses.	Through questioning students will be able to construct new functions using transformations, compositions, inverses, or regressions, with and without technology.	
		Students will show the graph of an exponential function reflected over the line $y = x$ is the graph of a logarithmic function.	Closure	
2.11 - SWBAT identify Students will Circulate and monitor	2.11.A			
---	--------------			
Logarithmic key characteristics understand the domain student progress as the	y are			
day) functions (1 of logarithmic of logarithmic working on classwork.				
number greater than				
zero.				
Have students complet	e			
problems at the board.				
Students will understand that just like exponential functions, logarithmic functions are always increasing or describe the characteris of a function with vary levels of precision.Through questioning students will be able to describe the characteris of a function with vary	stics ing			
either always concave				
Closure				
Students will understand how to apply transformations to logarithmic graphs				
2.12 - SWBAT rewrite Students will apply the Circulate and monitor	2.12.A			
Logarithmic logarithmic properties of student progress as the	y are			
Functionexpressions in equivalent forms.logarithms to evaluate expressions and graph functions.working on classwork.				
Have students complet	e			
Students will use				
properties of				
exponents and				
and evaluate students will be able to	,			
expressions express functions,				
equations, or expression analytically equivalent	ons in			
Students will				
recognize graphic				
translations of				
logarithms related to Closure				
the product, power,				
and change of base				

2.13 -	SWBAT solve	Students will use	Circulate and monitor	2.13.A &
Exponential and	exponential and	properties of	student progress as they are	2.13.B
Logarithmic	logarithmic	exponents and	working on classwork.	
Equations and	equations and	logarithms to solve		
Inequalities (6	inequalities.	equations and		
days)		inequalities.	Have students complete	
			problems at the board	
	SWBAT construct		problems at the board.	
	the inverse	When solving		
	function for	exponential and		
	exponential and	logarithmic equations	Through questioning	
	logarithmic	students will analyze	students will be able to	
	functions.	for extraneous	solve equations and	
		solutions.	inequalities represented	
			without technology	
			without technology.	
		Students will use		
		inverse operations to		
		write exponential and	Closure	
		logarithmic equations		
		that reverse the		
		mapping.	Ouiz 2.9 - 2.14	
2.14 -	SWBAT construct	Students will write a	Circulate and monitor	2.14. A
Logarithmic	a logarithmic	logarithmic function	student progress as they are	
Function	function model.	given two ordered	working on classwork.	
Function Context and	function model.	given two ordered pairs of a proportion	working on classwork.	
Function Context and Data Modeling	function model.	given two ordered pairs of a proportion and a real zero.	working on classwork.	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero.	working on classwork.	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero.	working on classwork. Have students complete	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero.	working on classwork. Have students complete problems at the board.	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use	working on classwork. Have students complete problems at the board.	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth.	working on classwork. Have students complete problems at the board.	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth.	working on classwork. Have students complete problems at the board. Through questioning	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth.	working on classwork. Have students complete problems at the board. Through questioning students will be able to	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth.	working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth. Students will use	 working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions using transformations, 	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth. Students will use transformations based	 working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions using transformations, compositions, inverses, or 	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth. Students will use transformations based on context or data set to model logarithmic	 working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions using transformations, compositions, inverses, or regressions, that may be usaful in modeling contexts 	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth. Students will use transformations based on context or data set to model logarithmic behavior	 working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria or data with and 	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth. Students will use transformations based on context or data set to model logarithmic behavior.	 working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria or data with and without technology 	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth. Students will use transformations based on context or data set to model logarithmic behavior.	 working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria or data with and without technology. 	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth. Students will use transformations based on context or data set to model logarithmic behavior.	 working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria or data with and without technology. 	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth. Students will use transformations based on context or data set to model logarithmic behavior. Students will use	 working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria or data with and without technology. 	
Function Context and Data Modeling (3 days)	function model.	given two ordered pairs of a proportion and a real zero. Students will use logarithms to model proportional growth. Students will use transformations based on context or data set to model logarithmic behavior. Students will use logarithmic regression	 working on classwork. Have students complete problems at the board. Through questioning students will be able to construct new functions using transformations, compositions, inverses, or regressions, that may be useful in modeling contexts, criteria or data with and without technology. Closure 	

		data set.		
		Students will use the natural log function to model phenomena,		
		Students will use logarithmic models to predict values for dependent variables.		
2.15 - Semi- log Plots (3 days)	SWBAT determine if an exponential model is appropriate by examining a semi- log plot of a data set.	Students will use semi- log plots with the y axis logarithmically scaled that show linear behavior from exponential characteristics.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board.	2.15.A & 2.15. B
	SWBAT construct the linearization of exponential data.	Students will apply techniques used to model linear behavior to semi-log graphs. Students will construct the linearization of exponential data.	Through questioning students will construct equivalent, graphical, numerical, analytical, and verbal representations of functions that are useful in a given mathematical or applied context with or without technology.	
			Closure	
			Quiz 2.14 - 2.15	

MA.9-12.1.2.A.1	The average rate of change of a function over an interval of the function's domain is the constant rate of change that yields the same change in the output values as the function yielded on that interval of the function's domain. It is the ratio of the change in the output values to the change in input values over that interval.
MA.9-12.1.2.A.2	The rate of change of a function at a point quantifies the rate at which output values would change were the input values to change at that point. The rate of change at a point can be approximated by the average rates of change of the function over small intervals containing the point, if such values exist.
MA.9-12.2.1.A.1	A sequence is a function from the whole numbers to the real numbers. Consequently, the graph of a sequence consists of discrete points instead of a curve.
MA.9-12.2.1.A.2	Successive terms in an arithmetic sequence have a common difference, or constant rate of change.
MA.9-12.2.1.A.3	The general term of an arithmetic sequence with a common difference <i>d</i> is denoted by a_n and is given by $a_n = a_0 + dn$, where a_0 is the initial value, or by $a_n = a_k + d(n - k)$, where a_k is the <i>k</i> th term of the sequence.
MA.9-12.2.1.B.1	Successive terms in a geometric sequence have a common ratio, or constant proportional change.
MA.9-12.2.1.B.2	The general term of a geometric sequence with a common ratio r is denoted by g_n and is given by $g_n = g_0 r^n$, where g_0 is the initial value, or by $g_n = g_k r^{(n)}$ ^{- k)} where g_k is the <i>k</i> th term of the sequence.
MA.9-12.2.1.B.3	Increasing arithmetic sequences increase equally with each step, whereas increasing geometric sequences increase by a larger amount with each successive step.
MA.9-12.2.2.A.1	Linear functions of the form $f(x) = b + mx$ are similar to arithmetic sequences of the form $a_n = a_0 + dn$, as both can be expressed as an initial value (<i>b</i> or a_0) plus repeated addition of a constant rate of change, the slope (<i>m</i> or <i>d</i>).
MA.9-12.2.2.A.2	Similar to arithmetic sequences of the form $a_n = a_k + d(n - k)$, which are based on a known difference, d , and a k th term, linear functions can be expressed in the form $f(x) = y_i + m(x - x_i)$ based on a known slope, m , and a point, (x_i, y_i) .
MA.9-12.2.2.A.3	Exponential functions of the form $f(x) = ab^x$ are similar to geometric sequences of the form $g_n = g_0 r^n$, as both can be expressed as an initial value $(a \text{ or } g_0)$ times repeated multiplication by a constant proportion $(b \text{ or } r)$.
MA.9-12.2.2.A.4	Similar to geometric sequences of the form $g_n = g_k r^{(n-k)}$, which are based on a known ratio, r , and a <i>k</i> th term, exponential functions can be expressed in the form $f(x) = y_i r^{(x-x_i)}$ based on a known ratio, r , and a point, (x_i, y_i) .
MA.9-12.2.2.A.5	Sequences and their corresponding functions may have different domains.
MA.9-12.2.2.B.1	Over equal-length input-value intervals, if the output values of a function change at constant rate, then the function is linear; if the output values of a

	function change proportionally, then the function is exponential.
MA.9-12.2.2.B.2	Linear functions of the form $f(x) = b + mx$ and exponential functions of the form $f(x) = ab^x$ can both be expressed analytically in terms of an initial value and a constant involved with change. However, linear functions are based on addition, while exponential functions are based on multiplication.
MA.9-12.2.2.B.3	Arithmetic sequences, linear functions, geometric sequences, and exponential functions all have the property that they can be determined by two distinct sequence or function values.
MA.9-12.2.3.A.1	The general form of an exponential function is $f(x) = ab^x$, with the initial value a , where $a \neq 0$, and the base b , where $b > 0$, and $b \neq 1$. When $a > 0$ and $b > 1$, the exponential function is said to demonstrate exponential growth. When $a > 0$ and $0 < b < 1$, the exponential function is said to demonstrate exponential decay.
MA.9-12.2.3.A.2	When the natural numbers are input values in an exponential function, the input value specifies the number of factors of the base to be applied to the function's initial value. The domain of an exponential function is all real numbers.
MA.9-12.2.3.A.3	Because the output values of exponential functions in general form are proportional over equal-length input-value intervals, exponential functions are always increasing or always decreasing, and their graphs are always concave up or always concave down. Consequently, exponential functions do not have extrema except on a closed interval, and their graphs do not have points of inflection.
MA.9-12.2.3.A.4	If the values of the additive transformation function $g(x) = f(x) + k$ of any function f are proportional over equal-length input-value intervals, then f is exponential.
MA.9-12.2.3.A.5	For an exponential function in general form, as the input values increase or decrease without bound, the output values will increase or decrease without bound or will get arbitrarily close to zero. That is, for an exponential function in general form, $lim [x \rightarrow \pm \infty] ab^x = \infty$, $lim [x \rightarrow \pm \infty] ab^x = -\infty$, $lim [x \rightarrow \pm \infty] ab^x = 0$.
MA.9-12.2.4.A.1	The product property for exponents states that $b^{m}b^{n} = b^{(m + n)}$. Graphically, this property implies that every horizontal translation of an exponential function, $f(x) = b^{(x + k)}$, is equivalent to a vertical dilation, $f(x) = b^{(x + k)} = b^{x}b^{k} = ab^{x}$, where $a = b^{k}$.
MA.9-12.2.4.A.2	The power property for exponents states that $(b^m)^n = b^{(mn)}$. Graphically, this property implies that every horizontal dilation of an exponential function, $f(x) = b^{(ex)}$, is equivalent to a change of the base of an exponential function, $f(x) = (b^c)^x$, where b^c is a constant and $c \neq 0$.
MA.9-12.2.4.A.3	The negative exponent property states that $b^{-n} = 1/b^n$.
MA.9-12.2.4.A.4	The value of an exponential expression involving an exponential unit fraction, such as $b^{(1/k)}$ where k is a natural number, is the kth root of b, when it exists.

MA.9-12.2.5.A.1	Exponential functions model growth patterns where successive output values over equal-length input-value intervals are proportional. When the input values are whole numbers, exponential functions model situations of repeated multiplication of a constant to an initial value.
MA.9-12.2.5.A.2	A constant may need to be added to the dependent variable values of a data set to reveal a proportional growth pattern.
MA.9-12.2.5.A.3	An exponential function model can be constructed from an appropriate ratio and initial value or from two input-output pairs. The initial value and the base can be found by solving a system of equations resulting from the two input-output pairs.
MA.9-12.2.5.A.4	Exponential function models can be constructed by applying transformations to $f(x) = ab^x$ based on characteristics of a contextual scenario or data set.
MA.9-12.2.5.A.5	Exponential function models can be constructed for a data set with technology using exponential regressions.
MA.9-12.2.5.A.6	The natural base e , which is approximately 2.718, is often used as the base in exponential functions that model contextual scenarios.
MA.9-12.2.5.B.1	For an exponential model in general form $f(x) = ab^x$, the base of the exponent, <i>b</i> , can be understood as a growth factor in successive unit changes in the input values and is related to a percent change in context.
MA.9-12.2.5.B.2	Equivalent forms of an exponential function can reveal different properties of the function. For example, if <i>d</i> represents number of days, then the base of $f(d) = 2^d$ indicates that the quantity increases by a factor of 2 every day, but the equivalent form $f(d) = 2^{7(d^7)}$ indicates that the quantity increases by a factor of 2^7 every week.
MA.9-12.2.5.B.3	Exponential models can be used to predict values for the dependent variable, depending on the contextual constraints on the domain.
MA.9-12.2.6.A.1	Two variables in a data set that demonstrate a slightly changing rate of change can be modeled by linear, quadratic, and exponential function models.
MA.9-12.2.6.A.2	Models can be compared based on contextual clues and applicability to determine which model is most appropriate.
MA.9-12.2.6.B.1	A model is justified as appropriate for a data set if the graph of the residuals of a regression, the residual plot, appear without pattern.
MA.9-12.2.6.B.2	The difference between the predicted and actual values is the error in the model. Depending on the data set and context, it may be more appropriate to have an underestimate or overestimate for any given interval.
MA.9-12.2.7.A.1	If f and g are functions, the composite function $f \circ g$ maps a set of input values to a set of output values such that the output values of g are used as input values of f. For this reason, the domain of the composite function is restricted to those input values of g for which the corresponding output value is in the domain of f. $(f \circ g)(x)$ can also be represented as $f(g(x))$.

MA.9-12.2.7.A.2	Values for the composite function $f \circ g$ can be calculated or estimated from the graphical, numerical, analytical, or verbal representations of f and g by using output values from g as input values for f .
MA.9-12.2.7.A.3	The composition of functions is not commutative; that is, $f \circ g$ and $g \circ f$ are typically different functions; therefore, $f(g(x))$ and $g(f(x))$ are typically different values.
MA.9-12.2.7.A.4	If the function $f(x) = x$ is composed with any function g , the resulting composite function is the same as g ; that is, $g(f(x)) = f(g(x)) = g(x)$. The function $f(x) = x$ is called the identity function. When composing two functions, the identity function acts in the same way as 0, the additive identity, when adding two numbers and 1, the multiplicative identity, when multiplying two numbers.
MA.9-12.2.7.B.1	Function composition is useful for relating two quantities that are not directly related by an existing formula.
MA.9-12.2.7.B.2	When analytic representations of the functions f and g are available, an analytic representation of $f(g(x))$ can be constructed by substituting $g(x)$ for every instance of x in f .
MA.9-12.2.7.B.3	A numerical or graphical representation of $f \circ g$ can often be constructed by calculating or estimating values for $(x, f(g(x)))$.
MA.9-12.2.7.C.1	Functions given analytically can often be decomposed into less complicated functions. When properly decomposed, the variable in one function should replace each instance of the function with which it was composed.
MA.9-12.2.7.C.2	An additive transformation of a function, f , that results in vertical and horizontal translations can be understood as the composition of $g(x) = x + k$ with f .
MA.9-12.2.7.C.3	A multiplicative transformation of a function, f , that results in vertical and horizontal dilations can be understood as the composition of $g(x) = kx$ with f .
MA.9-12.2.8.A.1	On a specified domain, a function, f , has an inverse function, or is invertible, if each output value of f is mapped from a unique input value. The domain of a function may be restricted in many ways to make the function invertible.
MA.9-12.2.8.A.2	An inverse function can be thought of as a reverse mapping of the function. An inverse function, f^{-1} , maps the output values of a function, f , on its invertible domain to their corresponding input values; that is, if $f(a) = b$, then $f^{-1}(b) = a$. Alternately, on its invertible domain, if a function consists of input-output pairs (a, b) , then the inverse function consists of input- output pairs (b, a) .
MA.9-12.2.8.B.1	The composition of a function, f , and its inverse function, f^{-1} , is the identity function; that is, $f(f^{-1}(x)) = f^{-1}(f(x)) = x$.
MA.9-12.2.8.B.2	On a function's invertible domain, the function's range and domain are the inverse function's domain and range, respectively. The inverse of the table

	of values of $y = f(x)$ can be found by reversing the input-output pairs; that is, (a, b) corresponds to (b, a) .
MA.9-12.2.8.B.3	The inverse of the graph of the function $y = f(x)$ can be found by reversing the roles of the <i>x</i> - and <i>y</i> -axes; that is, by reflecting the graph of the function over the graph of the identity function $h(x) = x$.
MA.9-12.2.8.B.4	The inverse of the function can be found by determining the inverse operations to reverse the mapping. One method for finding the inverse of the function f is reversing the roles of x and y in the equation $y = f(x)$, then solving for $y = f^{-1}(x)$.
MA.9-12.2.8.B.5	In addition to limiting the domain of a function to obtain an inverse function, contextual restrictions may also limit the applicability of an inverse function.
MA.9-12.2.9.A.1	The logarithmic expression $log_b c$ is equal to, or represents, the value that the base b must be exponentially raised to in order to obtain the value c. That is, $log_b c = a$ if and only if $b^a = c$, where a and c are constants, $b > 0$, and $b \neq 1$. (when the base of a logarithmic expression is not specified, it is understood as the common logarithm with a base of 10)
MA.9-12.2.9.A.2	The values of some logarithmic expressions are readily accessible through basic arithmetic while other values can be estimated through the use of technology.
MA.9-12.2.9.A.3	On a logarithmic scale, each unit represents a multiplicative change of the base of the logarithm. For example, on a standard scale, the units might be 0, 1, 2,, while on a logarithmic scale, using logarithm base 10, the units might be 10° , 10^{1} , 10^{2} ,
MA.9-12.2.10.A.1	The general form of a logarithmic function is $f(x) = a \log_b x$, with base <i>b</i> , where $b > 0$, $b \neq 1$, and $a \neq 0$.
MA.9-12.2.10.A.2	The way in which input and output values vary together have an inverse relationship in exponential and logarithmic functions. Output values of general-form exponential functions change proportionately as input values increase in equal-length intervals. However, input values of general-form logarithmic functions change proportionately as output values increase in equal-length intervals. Alternately, exponential growth is characterized by output values changing multiplicatively as input values change additively, whereas logarithmic growth is characterized by output values changing additively as input values change multiplicatively.
MA.9-12.2.10.A.3	$f(x) = log_b x$ and $g(x) = b^x$, where $b > 0$ and $b \neq 1$, are inverse functions. That is, $g(f(x)) = f(g(x)) = x$.
MA.9-12.2.10.A.4	The graph of the logarithmic function $f(x) = log_b x$, where $b > 0$ and $b \neq 1$, is a reflection of the graph of the exponential function $g(x) = b^x$, where $b > 0$ and $b \neq 1$, over the graph of the identity function $h(x) = x$.
MA.9-12.2.10.A.5	If (s, t) is an ordered pair of the exponential function $g(x) = b^x$, where $b > 0$ and $b \neq 1$, then (t, s) is an ordered pair of the logarithmic function $f(x) = log_b x$, where $b > 0$ and $b \neq 1$.

MA.9-12.2.11.A.1	The domain of a logarithmic function in general form is any real number greater than zero, and its range is all real numbers.
MA.9-12.2.11.A.2	Because logarithmic functions are inverses of exponential functions, logarithmic functions are also always increasing or always decreasing, and their graphs are either always concave up or always concave down. Consequently, logarithmic functions do not have extrema except on a closed interval, and their graphs do not have points of inflection.
MA.9-12.2.11.A.3	The additive transformation function $g(x) = f(x + k)$, where $k \neq 0$, of a logarithmic function f in general form does not have input values that are proportional over equal-length output-value intervals. However, if the input values of the additive transformation function, $g(x) = f(x + k)$, of any function f are proportional over equal-length output value intervals, then f is logarithmic.
MA.9-12.2.11.A.4	With their limited domain, logarithmic functions in general form are vertically asymptotic to $x = 0$, with an end behavior that is unbounded. That is, for a logarithmic function in general form, $\lim [x \to 0^+] a \log_b x = \pm \infty$ and $\lim [x \to \infty] a \log_b x = \pm \infty$.
MA.9-12.2.12.A.1	The product property for logarithms states that $log_b(xy) = log_b x + log_b y$. Graphically, this property implies that every horizontal dilation of a logarithmic function, $f(x) = log_b(kx)$, is equivalent to a vertical translation, $f(x) = log_b(kx) = log_b k + log_b x = a + log_b x$, where $a = log_b k$.
MA.9-12.2.12.A.2	The power property for logarithms states that $log_b x^n = n log_b x$. Graphically, this property implies that raising the input of a logarithmic function to a power, $f(x) = log_b x^k$, results in a vertical dilation, $f(x) = log_b x^k = k log_b x$.
MA.9-12.2.12.A.3	The change of base property for logarithms states that $log_b x = (log_a x)/(log_a b)$, where $a > 0$ and $a \neq 1$. This implies that all logarithmic functions are vertical dilations of each other.
MA.9-12.2.12.A.4	The function $f(x) = \ln x$ is a logarithmic function with the natural base e ; that is, $\ln x = \log_e x$.
MA.9-12.2.13.A.1	Properties of exponents, properties of logarithms, and the inverse relationship between exponential and logarithmic functions can be used to solve equations and inequalities involving exponents and logarithms.
MA.9-12.2.13.A.2	When solving exponential and logarithmic equations found through analytical or graphical methods, the results should be examined for extraneous solutions precluded by the mathematical or contextual limitations.
MA.9-12.2.13.A.3	Logarithms can be used to rewrite expressions involving exponential functions in different ways that may reveal helpful information. Specifically, $b^x = c^{(log_c b)(x)}$.
MA.9-12.2.13.B.1	The function $f(x) = ab^{(x - h)} + k$ is a combination of additive transformations of an exponential function in general form. The inverse of $y = f(x)$ can be

	found by determining the inverse operations to reverse the mapping.
MA.9-12.2.13.B.2	The function $f(x) = a \log_b (x - h) + k$ is a combination of additive transformations of a logarithmic function in general form. The inverse of $y = f(x)$ can be found by determining the inverse operations to reverse the mapping.
MA.9-12.2.14.A.1	Logarithmic functions are inverses of exponential functions and can be used to model situations involving proportional growth, or repeated multiplication, where the input values change proportionally over equal- length output-value intervals. Alternately, if the output value is a whole number, it indicates how many times the initial value has been multiplied by the proportion.
MA.9-12.2.14.A.2	A logarithmic function model can be constructed from an appropriate proportion and a real zero or from two input-output pairs.
MA.9-12.2.14.A.3	Logarithmic function models can be constructed by applying transformations to $f(x) = a \log_b x$ based on characteristics of a context or data set.
MA.9-12.2.14.A.4	Logarithmic function models can be constructed for a data set with technology using logarithmic regressions.
MA.9-12.2.14.A.5	The natural logarithm function is often useful in modeling real-world phenomena.
MA.9-12.2.14.A.6	Logarithmic function models can be used to predict values for the dependent variable.
MA.9-12.2.15.A.1	In a semi-log plot, one of the axes is logarithmically scaled. When the <i>y</i> -axis of a semi-log plot is logarithmically scaled, data or functions that demonstrate exponential characteristics will appear linear.
MA.9-12.2.15.A.2	An advantage of semi-log plots is that a constant never needs to be added to the dependent variable values to reveal that an exponential model is appropriate.
MA.9-12.2.15.B.1	Techniques used to model linear functions can be applied to a semi-log graph.
MA.9-12.2.15.B.2	For an exponential model of the form $y = ab^x$, the corresponding linear model for the semi-log plot is $y = (log_n b)x + log_n a$, where $n > 0$ and $n \neq 1$. Specifically, the linear rate of change is $log_n b$, and the initial linear value is $log_n a$.

Suggested Modifications for Special Education, ELL and Gifted Students

- Anchor charts to model strategies.
- Review Algebra concepts to ensure students have the information needed to progress in understanding.

- Pre-teach pertinent vocabulary.
- Provide reference sheets that list formulas, step-by-step procedures, theorems, and modeling of strategies.
- Word wall with visual representations of mathematical terms.
- Teacher modeling of thinking processes involved in solving, graphing, and writing equations.
- Introduce concepts embedded in real-life context to help students relate to the mathematics involved.
- Record formulas, processes, and mathematical rules in reference notebooks.
- Graphing calculator to assist with computations and graphing of trigonometric functions.
- Utilize technology through interactive sites to represent nonlinear data.
- Graphic organizers to help students interpret the meaning of terms in an expression or equation in context.
- Translation dictionary.
- Sentence stems to provide additional language support for ELL students.

Suggested Technological Innovations/Use

Cross Curricular/21st Century Connections

Model interdisciplinary thinking to expose students to other disciplines. Social Studies and ELA Literacy Connection:

Name of Task: Americans' spending: NJSLS: 6.1.12.HistoryCC.16.b, 6.2.12.EconGE.5.a

From July 1998 to July 1999, Americans' spending rose from 5.82 trillion dollars to 6.20 trillion dollars

a. Let x = 0 represent July 1998, x = 1 represent August 1998, ..., and x = 12 represent July 1999. Write a linear equation for Americans' spending in terms of the month x

- b. Use the equation in (a) to predict Americans' spending in July 2002.
- c. Based on the model created in (a) when would the aggregate expenditure exceed 10 trillion dollars?
- d. What part of the US GDP is spent by the Americans in 2013?

Name of Task: Publishing Cost:

A publishing company estimates that the average cost (in dollars) for one copy of a new scenic calendar it

plans to produce can be approximated by the function C(x) = (2.25x + 275)/x

2.25 x+

Where *x* is the number of calendars printed.

a. Find the average cost per calendar when the company prints 100 calendars.

b. Identify the domain and range of this function.

c. After analyzing the function, Alex said that this company should not be allowed to publish zero calendars. As a result, the company has no option to shut down and go out of business. Write an argument to support or reject Alex's conclusion.

Science Connection:

Name of Task: Myoglobin and Hemoglobin: NJSLS: HS-LS1-2; HS-LS1-4

Myoglobin and hemoglobin are oxygen-carrying molecules in the human body. Hemoglobin is found inside red blood cells, which flow from the lungs to the muscles through the

bloodstream. Myoglobin is found in muscle cells. The function y = M(p) = p/(1 + p) calculates the fraction of myoglobin saturated with oxygen at a given presure *p* Torrs. For example, at a pressure of 1 Torr, M(1) = 0.5, which means half of the myoglobin (i.e. 50%) is oxygen saturated. (Note: More precisely, you need to use something called the "partial pressure", but the distinction is not important for this problem.) Likewise, the function calculates the fraction of hemoglobin saturated with oxygen at a given pressure *p*. [UW]

a. The graphs of M(P) and H(P) are given here on the domain

0≤p≤100

Which is which?

b. If the pressure in the lungs is 100 Torrs, what is the level of oxygen saturation of the hemoglobin in the lungs?

c. The pressure in an active muscle is 20 Torrs. What is the level of oxygen saturation of myoglobin in an active muscle? What is the level of hemoglobin in an active muscle?

d. Define the efficiency of oxygen transport at a given pressure p to be M(p) - H(p). What is the oxygen

transport efficiency at 20 Torrs? At 40 Torrs? At 60 Torrs? Sketch the graph of M(p) - H(p); are there conditions under which transport efficiency is maximized (explain)?

Business Connection :

Name of Task: Minimize the metal in a can: NJSLS: 9.1.12.A.4; W.11-12.1

A manufacturer wants to manufacture a metal can that holds 1000 cm^3 of oil. The can is in the shape of a right cylinder with a radius *r* and height *h*. Assume the thickness of the material used to make the metal can is negligible.

For each question, include correct units of measurement and round your answers to the nearest tenth. Using your knowledge of volume and surface area of a right cylinder, write a function S(r) that represents the surface area of the cylindrical can in terms of the radius, r, of its base. Show in detail your algebraic thinking.

1. Sketch the graph of S(r) and show key features of the graph. State any restriction on the value of r so that it represents the physical model of the can.

2. What dimensions will minimize the quantity of metal needed to manufacture the cylindrical can? Show in detail your mathematical solution.

3. Calculate the minimum value of the function S(r) and interpret the result in the context of the physical model. Show the mathematical steps you used to obtain the answer.

Name of Task: Chemco Manufacturing: NJSLS: 9.1.12.A.4; W.11-12.1

Chemco Manufacturing estimates that its profit P in hundreds of dollars is $P = -4x^2 + 40x + 3$ where x is the number of units produced in thousands.

a. How many units must be produced to obtain the maximum profit?

b. Graph the profit function and identify its vertex.

c. An increase in productivity increased profit by \$7 at each quantity sold. What kind of a transformation would model this situation? Show your work graphically and algebraically.

d. A decrease in marginal cost lead to a 4 units increase in the optimum level of production. What kind of a transformation would model this situation? Show your work graphically and algebraically.

Unit 3 Trigonometric and Polar Functions

Content Area:MathematicsCourse(s):APPreCalculusTime Period:3rd Marking PeriodLength:7 weeksStatus:Published

Section Title

Trigonometric and Polar Functions

Enduring Understandings

Measure angles in standard position on the coordinate plane and their properties.

A radian is an angle measure with an arc length of one radius.

Label the angles on the unit circle in radians using proportional reasoning.

Use special right triangles to determine the coordinates at key points on the unit circle. Evaluate sine, cosine, and tangent for key angles on the unit circle.

Construct graphs of the sine and cosine functions by observing that as the input values, or angle measures, of the sine function increase, the output values of sine and cosine oscillate between -1 and 1.

Relate additive transformations with horizontal/vertical transformation and multiplicative transformation with dilation and use these transformations to graph transformed sine and cosine functions.

Identify information from graphical, numerical, analytical, and verbal representations to answer a question or construct a model, with and without technology

Summary of the Unit

Analyze, describe different types of angles. Analyze and describe angles and angular movement and relate this information to real life phenomena. Model and make predictions about periodic behavior using the graphs

of trigonometric functions. Solve the equation using trigonometric relationships and algebraic techniques.

Essential Questions

- Since energy usage goes up and down through the year, how can I use trends in data to predict my monthly electricity bills when I get my first apartment?
- How do we model aspects of circular and spinning objects without using complex equations from the x-y rectangular-based coordinate system?
- o How does right triangle trigonometry from geometry relate to trigonometric functions?

Summative Assessment and/or Summative Criteria

Required District/State Assessments

- SGO Pre Assessment
- SGO Post Assessment

Suggested Formative/Summative Classroom Assessments

- Describe Learning Vertically
- Identify Key Building Blocks
- Make Connections (between and among crucial building blocks)
- Short/Extended Constructed Response Items
- Multiple-Choice Items (where multiple answer choices may be correct)
- Drag and Drop Items
- Use of Equation Editor
- Quizzes
- Journal Entries/Reflections/Quick-Writes
- Accountable talk
- Projects

- Portfolio
- Observation
- Graphic Organizers/ Concept Mapping
- Presentations
- Teacher-Student and Student-Student Conferencing
- AP Classroom Assessments created with specific sections outlined.
- WebAssign Problem Sets <u>WebAssign Instructor Help</u>
- Homework
- Students will take formal assessments, such as tests and quizzes, to assess knowledge of concepts learned throughout the unit.
- Students will also demonstrate mastery through various assessment criteria included in the unit such as do nows, exit slips, graded classwork activities and assignments, and/or projects.

Resources

- AP Daily Videos: Section 3.1 3.3
- AP Daily Videos: Section 3.4-3.6
- AP Daily Videos: Section 3.7
- AP Daily Videos: Section 3.8
- AP Daily Videos: Section 3.9 3.11
- AP Daily Videos: Section 3.13 3.15
- AP Precalculus Course Overview: <u>https://apcentral.collegeboard.org/courses/ap-precalculus/course</u>
- AP Precalculus Course and Exam Description: <u>https://apcentral.collegeboard.org/media/pdf/apprecalculus-course-and-exam-description.pdf</u>
- AP Precalculus Practice Exam: <u>https://apcentral.collegeboard.org/media/pdf/ap-precalculus-practice-exam-multiple-choice-section.pdf</u>
- AP Precalculus Classroom Resources: <u>https://apcentral.collegeboard.org/courses/apprecalculus/classroom-resources</u>

- Classpad.net (Casio): <u>https://classpad.net/us/</u>
- Desmos: <u>https://www.desmos.com/</u>
- Geogebra: <u>https://www.geogebra.org/?lang=en</u>
- Math Open Reference: <u>https://www.mathopenref.com/</u>
- TI Education (Texas Instruments): <u>https://education.ti.com/en</u>
- WolframAlpha: <u>https://www.wolframalpha.com/</u>
- Wolfram MathWorld: <u>https://mathworld.wolfram.com/</u>
- Khan Academy: <u>https://www.khanacademy.org/math/precalculus</u>
- Digital Mathematics Word Wall: <u>http://www.mathwords.com/index_adv_alg_precal.htm</u>
- Extra Notes for Pre-Calculus Content: <u>https://sites.google.com/a/evergreenps.org/ms-griffin-s-math-classes/updates</u>
- Review Documents for Pre-Calculus: <u>https://sites.google.com/site/dgrahamcalculus/trigpre-calculus/trig-pre-calculus-worksheets</u>
- Pre-Calculus IXL Topics and Resources: <u>https://www.ixl.com/math/precalculus</u>
- Classroom Challenges to Support Teachers in Formative Assessments: <u>http://map.mathshell.org/materials/lessons.php?gradeid=24</u>
- Applications of Function Models: <u>https://www.ck12.org/algebra/Applications-of-Function-Models/lesson/Applications-of-Function-Models-BSC-ALG/?referrer=featured_content</u>
- Statistics Education Web (STEW). <u>http://www.amstat.org/education/STEW/</u>
- The Data and Story Library (DASL). <u>http://lib.stat.cmu.edu/DASL/</u>
- <u>WebAssign Instructor Resources</u>
- <u>WebAssign Student Resources</u>
- Cengage Learning: PreCalculus with Limits A Graphing Approach, Sixth Edition

Unit Plan

Topic/Selection Timeframe	General Objectives	Instructional Activities	Benchmarks/Assessments	Standards
3.1 Periodic Phenomena	SWBAT Construct graphs of periodic	Students will determine how to measure angles in	Circulate and monitor student progress as they are working on classwork.	3.1.A.1
(2 days)	relationships based on verbal representations.	standard position on the coordinate plane and their properties.	Have students complete	3.1.A.2
	SWBAT Describe key characteristics of a periodic	Students will	problems at the board.	3.1.B.1
	function based on a verbal representation.	determine that a radian is an angle measure with an arc length of one radius.	Through questioning students will be able to determine coordinates of unit circle.	3.1.B.2
				3.1.B.3
		Students will label the angles on the unit circle in radians using proportional reasoning.	Closure	

3.2 Sine,	SWBAT	Students will use	Circulate and monitor	3.2.A.1
Cosine, and	Determine the	special right triangles	student progress as they are	
Tangent	sine, cosine, and	to determine the	working on classwork.	2242
(2 daya)	tangent of an	coordinates at key		3.2.A.2
(5 days)	angle using the	points on the unit		32 1 3
	unit circle.	circle.	Have students complete	J.2.A.J
		Students will evaluate	problems at the board.	3.2.A.4
		sine, cosine, and	1	
		tangent for key angles		3.2.A.5
		on the unit circle.		
			I hrough questioning	
			evaluate sine cosine and	
		Students will find	tangent for key angles on	
		coordinates of points	the unit circle.	
		on circles where $r \neq 1$.		
			Clasure	
			Closure	

3.3 Sine and Cosine Function Values(3 days)	SWBAT Determine coordinates of points on a circle centered at the origin.	Students will determine that in a unit circle, the sine and cosine ratios correspond to the y- value and x-value, respectively, of the point where the terminal ray intersects the circle.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board.	3.3.A.1 3.3.A.2
		Students then will be able to use symmetry to identify relationships between the sine and cosine values of angles in all four quadrants.	Through questioning students will be able to determine values of any angle in the unit circle. Closure	
3.4 Sine and	Construct	Students would be	Circulate and monitor	3.4.A.1
Graphs	the sine and cosine functions	graphs of the sine and cosine functions by	working on classwork.	
(3 days)	using the unit circle.	observing that as the input values, or angle measures, of the sine function increase, the output values of sine and and cosine	Have students complete problems at the board.	3.4.A.3
		oscillate between -1 and 1, taking every value in between and tracking the vertical distance of points on the unit circle from the x-axis.	Through questioning students will be able to construct graphs of the sine and cosine functions using values from the unit circle.	3.4.A.4
			Closure	

3.5 Sinusoidal	SWBAT Identify	Students would be	Circulate and monitor	3.5.A.1
Functions	key characteristics	able to determine that	student progress as they are	
	of the sine and	a sinusoidal function is	working on classwork.	
(3 days)	cosine functions.	any function that		2512
		involves additive and		5.5.A.2
		multiplicative	Have students complete	
		transformations of sin	problems at the board	
		x. The sine and cosine	problems at the board.	3.5.A.3
		functions are both		
		sinusoidal functions.		
		frequency of a	Through questioning	
		sinusoidal function are	students will be able to	3.5.A.4
		reciprocals	Identify key characteristics	
		The amplitude of a	for the parent functions	
		sinusoidal function is	y=sin x and y=cos x,	35A5
		half the difference	including domain,	5.0.11.0
		between its maximum	amplitude, midline, period,	
		and minimum values.	and symmetry.	
		The midline of the		
		graph of a sinusoidal		
		function is determined	Closure	
		by the average, or		
		arithmetic mean, of the		
		maximum and		
		minimum values of the		
		function. The midline		
		of the graphs of $y =$		
		$\sin\theta$ and $y = \cos\theta$ is y		
		=0.		
		As input values		
		increase, the graphs of		
		sinusoidal functions		
		oscillate between		
		concave down and		
		The graph of $y = \sin y$		
		has rotational		
		symmetry about the		
		origin and is therefore		
		an odd function The		
		graph of $y = \cos x$ has		
		reflective symmetry		
		over the y-axis and is		
		therefore an even		
		function.		

3.6 Sinusoidal	SWBAT Identify	Students will	Circulate and monitor	3.6.A.1
Function	the amplitude,	determine how the	student progress as they are	
Transformations	vertical shift,	amplitude, period,	working on classwork.	
(3 days)	period, and phase	domain, range, and		3.6.A.2
(5 duys)	sinusoidal	functions are affected		
	function.	by transformations.	Have students complete	
		-)	problems at the board.	2642
		Students would be		3.0.A.3
		able relate additive		
		transformations with	Through questioning	
		transformation and and	students will be able to	3.6.A.4
		multiplicative	graph transformed sine and	
		transformation with	cosine functions given an	
		dilation and use these	equation.	3.6.A.5
		transformations to		
		graph transformed sine		
		and cosine functions.	Closure	3646
3.7 Sinusoidal	SWBAT	Students will	Circulate and monitor	3.7.A.1
Function	Construct	determine how to use	student progress as they are	
Context and	sinusoidal	trigonometric ratios	working on classwork.	
Data Modeling	function models	and angle measured		27.4.2
(2,1)	of periodic	relative to the north-		3.7.A.2
(3 days)	phenomena.	south line to solve	Have students complete	
		problems using	problems at the board.	
		navigations.	1	3.7.A.3
			Through questioning	
		Students will Identify	students will be able to	3.7.A.4
		information from	students will be able to	
		graphical, numerical,	Interpret a sinusoidal	
		representations to	function's period,	37 1 5
		answer a question or	amplitude, midline, and	5.7.A.5
		construct a model,	range in context be able to	
		with and without	construct a trigonometric	
		technology.	and key features	
			und ney realures.	
		Students would be	CI	
		able to describe the	Closure	
		characteristics of a		
		function with varying		
		levels of precision,		
		aepending on the		

		function representation and available mathematical tools.		
3.8 The Tangent Function	SWBAT Construct representations of	Students would be able to construct graphs of the tangent	Circulate and monitor student progress as they are working on classwork	3.8.A.1
(2 days)	the tangent function using the unit circle	functions by observing that as the input	working on class work.	3.8.A.2
	SWBAT Describe	measures, of the tangent function increase. The asymptote equations	Have students complete problems at the board.	3.8.B.1
	of the tangent function.	are found when the function in the denominator is zero.	Through questioning students will be able to evaluate tangent for key angles on the unit circle.	3.8.B.2
	SWBAT Describe additive and multiplicative transformations involving the		Closure	3.8.B.3
	tangent function.			
3.9 Inverse	SWBAT	SWBAT understand	Circulate and monitor	3.9.A.1
Functions	analytical and	trigonometric	working on classwork.	
	graphical	functions input ratios		20.4.2
(3 days)	representations of	and output angles. The		3.9.A.2
	sine cosine and	values are switched	Have students complete	
	tangent functions	from their	problems at the board.	30 / 3
	over a restricted	corresponding		J.J.A.J
	domain.	functions.	Through questioning	
		SWBAT understand through graphical representation why and how the domains of sine, cosine, and	students will be able to evaluate inverse of sine, cosine, and tangent for key points on the unit circle.	
		tangent must be restricted to create an inverse function.	Closure	
		SWBAT evaluate inverse trig		

		expressions.		
3.10 Trigonometric	SWBAT Solve	SWBAT extend the	Circulate and monitor	3.10.A.1
Equations and	inequalities	operations to	working on classwork.	
Inequalities	involving trigonometric	trigonometric equations and		3.10.A.2
(4 days)	functions.	inequalities.	Have students complete	
		SWBAT understand that using the unit	problems at the board.	3.10.A.3
		circle will give infinite solutions to a		
		trigonometric equation which may need to be	students will be able to find solutions given	
		context and that an inverse trig function	trigonometric equations.	
		gives only one solution that may need		
		to be expanded using symmetry.	Closure	
3.11 The Secant	SWBAT Identify key characteristics	SWBAT define the secant cosecant and	Circulate and monitor	3.11.A.1
Cosecant, and	of functions that	cotangent functions as	working on classwork.	
Functions	of the sine and	cosine, sine, and		3.11.A.2
(3 days)	cosine functions.	respectively.	Have students complete	
		SWBAT understand	problems at the board.	3.11.A.3
		asymptotes, and range	Through questioning	
		trigonometric function and its reciprocal	students will be able to Identify key characteristics for the parent functions	3.11.A.4
		function.	y=csc x and y=sec x and cotangent including	3.11.A.5
			domain, period, asymptotes and symmetry.	
			Closure	
3.12 Equivalent	SWBAT Rewrite	SWBAT explore	Circulate and monitor	3.12.A.1
of	expressions in	all six trigonometric	student progress as they are	

Trigonometric Functions (3 days)	equivalent forms with the Pythagorean identity. SWBAT Rewrite trigonometric expressions in equivalent forms with sine and cosine sum identities.	functions, including the Pythagorean identities. SWBAT use identities to establish and verify other trigonometric relationships and solve trigonometric equations	working on classwork. Have students complete problems at the board. Through questioning students will be able to verify trigonometric relationships.	3.12.A.2 3.12.B.1 3.12.B.2 3.12.B.3
	SWBAT Solve equations using equivalent analytic representations of trigonometric functions		Closure	3.12.B.4
3.13 Trigonometry and Polar Coordinates (3 days)	SWBAT Determine the location of a point in the plane using both rectangular and polar	SWBAT understand that polar coordinates give an alternate method for locating points using a distance from the origin and an	Circulate and monitor student progress as they are working on classwork.	3.13.A.1 3.13.A.2
	coordinates.	angle from the positive x-axis.	Have students complete problems at the board.	3.13.A.3
		SWBAT use coterminal angles and reflected radii to name polar points in multiple ways. SWBAT convert	Through questioning students will be able to plot coordinates, and convert between polar and rectangular coordinates.	3.13.A.4
		between polar and rectangular coordinates.	Closure	
3.14 Polar Function	SWBAT Construct graphs	SWBAT understand that polar functions	Circulate and monitor student progress as they are	3.14.A.1
Graphs (3 days)	of polar functions.	input angle measures and output radii and point-by-point	working on classwork.	3.14.A.2

		graphing can be used to construct their graphs.	Have students complete problems at the board. Through questioning students will be able to graph polar graphs using key features	3.14.A.3
			Closura	
2 15 Pates of	SWPAT Describe	SWPAT identify the	Circulate and monitor	2 15 1 1
Change in Polar	characteristics of	number length and	student progress as they are	J.1J.A.1
Functions	the graph of a	location of netals of a	working on classwork	
1 unotions	polar function	polar rose from the	working on clusswork.	
(3 days)	point innotion.	values of the		3.15.A.2
		parameters, a and n.		
		1 ,	Have students complete	
		SWBAT identify	problems at the board.	21542
		special types of		3.15.A.3
		limacons by		
		comparing values of the parameters, a and b.	Through questioning students will be able to graph and identify special	3.15.A.4
		SWBAT describe key	polar curves.	
		features of the graphs		3.15.A.5
		of circles, roses and		
		limacons including	Closure	
		symmetry, intercepts,		
		domain, and range,		
		and maximum and		
		minimum values.		

MA.9-12.3.1.A.1	A periodic relationship can be identified between two aspects of a context if, as the input values increase, the output values demonstrate a repeating pattern over successive equal-length intervals.
MA.9-12.3.1.A.2	The graph of a periodic relationship can be constructed from the graph of a

	single cycle of the relationship.
MA.9-12.3.1.B.1	The period of the function is the smallest positive value k such that $f(x + k) = f(x)$ for all x in the domain. Consequently, the behavior of a periodic function is completely determined by any interval of width k.
MA.9-12.3.1.B.2	The period can be estimated by investigating successive equal-length output values and finding where the pattern begins to repeat.
MA.9-12.3.1.B.3	Periodic functions take on characteristics of other functions, such as intervals of increase and decrease, different concavities, and various rates of change. However, with periodic functions, all characteristics found in one period of the function will be in every period of the function.
MA.9-12.3.2.A.1	In the coordinate plane, an angle is in standard position when the vertex coincides with the origin and one ray coincides with the positive <i>x</i> -axis. The other ray is called the terminal ray. Positive and negative angle measures indicate rotations from the positive <i>x</i> -axis in the counterclockwise and clockwise direction, respectively. Angles in standard position that share a terminal ray differ by an integer number of revolutions.
MA.9-12.3.2.A.2	The radian measure of an angle in standard position is the ratio of the length of the arc of a circle centered at the origin subtended by the angle to the radius of that same circle. For a unit circle, which has radius 1, the radian measure is the same as the length of the subtended arc.
MA.9-12.3.2.A.3	Given an angle in standard position and a circle centered at the origin, there is a point, P , where the terminal ray intersects the circle. The sine of the angle is the ratio of the vertical displacement of P from the x-axis to the distance between the origin and point P . Therefore, for a unit circle, the sine of the angle is the y-coordinate of point P .
MA.9-12.3.2.A.4	Given an angle in standard position and a circle centered at the origin, there is a point, P , where the terminal ray intersects the circle. The cosine of the angle is the ratio of the horizontal displacement of P from the y-axis to the distance between the origin and point P . Therefore, for a unit circle, the cosine of the angle is the x-coordinate of point P .
MA.9-12.3.2.A.5	Given an angle in standard position, the tangent of the angle is the slope, if it exists, of the terminal ray. Because the slope of the terminal ray is the ratio of the vertical displacement to the horizontal displacement over any interval, the tangent of the angle is the ratio of the <i>y</i> -coordinate to the <i>x</i> - coordinate of the point at which the terminal ray intersects the unit circle; alternately, it is the ratio of the angle's sine to its cosine.
MA.9-12.3.3.A.1	Given an angle of measure θ in standard position and a circle with radius r centered at the origin, there is a point, P , where the terminal ray intersects the circle. The coordinates of point P are $(r \cos \theta, r \sin \theta)$.
MA.9-12.3.3.A.2	The geometry of isosceles right and equilateral triangles, while attending to the signs of the values based on the quadrant of the angle, can be used to find exact values for the cosine and sine of angles that are multiples of $\pi/4$ and $\pi/6$ radians and whose terminal rays do not lie on an axis.

MA.9-12.3.4.A.1	Given an angle of measure θ in standard position and a unit circle centered at the origin, there is a point, <i>P</i> , where the terminal ray intersects the circle. The sine function, $f(\theta) = \sin \theta$, gives the <i>y</i> -coordinate, or vertical displacement from the <i>x</i> -axis, of point <i>P</i> . The domain of the sine function is all real numbers.
MA.9-12.3.4.A.2	As the input values, or angle measures, of the sine function increase, the output values oscillate between -1 and 1, taking every value in between and tracking the vertical distance of points on the unit circle from the <i>x</i> -axis.
MA.9-12.3.4.A.3	Given an angle of measure θ in standard position and a unit circle centered at the origin, there is a point, <i>P</i> , where the terminal ray intersects the circle. The cosine function, $f(\theta) = \cos \theta$, gives the <i>x</i> -coordinate, or horizontal displacement from the <i>y</i> -axis, of point <i>P</i> . The domain of the cosine function is all real numbers.
MA.9-12.3.4.A.4	As the input values, or angle measures, of the cosine function increase, the output values oscillate between -1 and 1, taking every value in between and tracking the horizontal distance of points on the unit circle from the <i>y</i> -axis.
MA.9-12.3.5.A.1	A sinusoidal function is any function that involves additive and multiplicative transformations of $f(\theta) = \sin \theta$. The sine and cosine functions are both sinusoidal functions, with $\cos \theta = \sin (\theta + \pi/2)$.
MA.9-12.3.5.A.2	The period and frequency of a sinusoidal function are reciprocals. The period of $f(\theta) = \sin \theta$ and $g(\theta) = \cos \theta$ is 2π , and the frequency is $1/2\pi$.
MA.9-12.3.5.A.3	The amplitude of a sinusoidal function is half the difference between its maximum and minimum values. The amplitude of $f(\theta) = \sin \theta$ and $g(\theta) = \cos \theta$ is 1.
MA.9-12.3.5.A.4	The midline of the graph of a sinusoidal function is determined by the average, or arithmetic mean, of the maximum and minimum values of the function. The midline of the graphs of $y = \sin \theta$ and $y = \cos \theta$ is $y = 0$.
MA.9-12.3.5.A.5	As input values increase, the graphs of sinusoidal functions oscillate between concave down and concave up.
MA.9-12.3.5.A.6	The graph of $y = \sin \theta$ has rotational symmetry about the origin and is therefore an odd function. The graph of $y = \cos \theta$ has reflective symmetry over the <i>y</i> -axis and is therefore an even function.
MA.9-12.3.6.A.1	Functions that can be written in the form $f(\theta) = a \sin(b(\theta + c)) + d$ or $g(\theta) = a \cos(b(\theta + c)) + d$, where a, b, c , and d are real numbers and $a \neq 0$, are sinusoidal functions and are transformations of the sine and cosine functions. Additive and multiplicative transformations are the same for both sine and cosine because the cosine function is a phase shift of the sine function by $-\pi/2$ units.
MA.9-12.3.6.A.2	The graph of the additive transformation $g(\theta) = \sin \theta + d$ of the sine function $f(\theta) = \sin \theta$ is a vertical translation of the graph of f , including its midline, by d units. The same transformation of the cosine function yields the same result.

MA.9-12.3.6.A.3	The graph of the additive transformation $g(\theta) = \sin(\theta + c)$ of the sine function $f(\theta) = \sin \theta$ is a horizontal translation, or phase shift, of the graph of <i>f</i> by $-c$ units. The same transformation of the cosine function yields the same result.
MA.9-12.3.6.A.4	The graph of the multiplicative transformation $g(\theta) = a \sin \theta$ of the sine function $f(\theta) = \sin \theta$ is a vertical dilation of the graph of f and differs in amplitude by a factor of $ a $. The same transformation of the cosine function yields the same result.
MA.9-12.3.6.A.5	The graph of the multiplicative transformation $g(\theta) = \sin(b\theta)$ of the sine function $f(\theta) = \sin \theta$ is a horizontal dilation of the graph of f and differs in period by a factor of $ 1/b $. The same transformation of the cosine function yields the same result.
MA.9-12.3.6.A.6	The graph of $y = f(\theta) = a \sin(b(\theta + c)) + d$ has an amplitude of $ a $ units, a period of $ 1/b 2\pi$ units, a midline vertical shift of <i>d</i> units from $y = 0$, and a phase shift of $-c$ units. The same transformations of the cosine function yield the same results.
MA.9-12.3.7.A.1	The smallest interval of input values over which the maximum or minimum output values start to repeat, that is, the input-value interval between consecutive maxima or consecutive minima, can be used to determine or estimate the period and frequency for a sinusoidal function model.
MA.9-12.3.7.A.2	The maximum and minimum output values can be used to determine or estimate the amplitude and vertical shift for a sinusoidal function model.
MA.9-12.3.7.A.3	An actual pair of input-output values can be compared to pairs of input- output values produced by a sinusoidal function model to determine or estimate a phase shift for the model.
MA.9-12.3.7.A.4	Sinusoidal function models can be constructed for a data set with technology by estimating key values or using sinusoidal regressions.
MA.9-12.3.7.A.5	Sinusoidal functions that model a data set are frequently only useful over their contextual domain and can be used to predict values of the dependent variable from values of the independent variable.
MA.9-12.3.8.B.1	Because the slope values of the terminal ray repeat every one-half revolution of the circle, the tangent function has a period of π .
MA.9-12.3.8.B.2	The tangent function demonstrates periodic asymptotic behavior at input values $\theta = \pi/2 + k\pi$, for integer values of k, because $\cos \theta = 0$ at those values.
MA.9-12.3.8.B.3	The tangent function increases and its graph changes from concave down to concave up between consecutive asymptotes.
MA.9-12.3.8.C.1	The graph of the additive transformation $g(\theta) = \tan \theta + d$ of the tangent function $f(\theta) = \tan \theta$ is a vertical translation of the graph of f and the line containing its points of inflection by d units.
MA.9-12.3.8.C.2	The graph of the additive transformation $g(\theta) = \tan(\theta + c)$ of the tangent function $f(\theta) = \tan \theta$ is a horizontal translation, or phase shift, of the graph

	of f by $-c$ units.
MA.9-12.3.8.C.3	The graph of the multiplicative transformation $g(\theta) = a \tan \theta$ of the tangent function $f(\theta) = \tan \theta$ is a vertical dilation of the graph of f by a factor of $ a $. If $a < 0$, the transformation involves a reflection over the <i>x</i> -axis.
MA.9-12.3.8.C.4	The graph of the multiplicative transformation $g(\theta) = \tan(b\theta)$ of the tangent function $f(\theta) = \tan \theta$ is a horizontal dilation of the graph of f and differs in period by a factor of $ 1/b $. If $b < 0$, the transformation involves a reflection over the <i>y</i> -axis.
MA.9-12.3.8.C.5	The graph of $y = f(\theta) = a \tan (b(\theta + c)) + d$ is a vertical dilation of the graph of $y = \tan \theta$ by a factor of $ a $, has a period of $ 1/b \pi$ units, is a vertical shift of the line containing the points of inflection of the graph of $y = \tan \theta$ by d units, and is a phase shift of $-c$ units.
MA.9-12.3.9.A.1	For inverse trigonometric functions, the input and output values are switched from their corresponding trigonometric functions, so the output value of an inverse trigonometric function is often interpreted as an angle measure and the input is a value in the range of the corresponding trigonometric function.
MA.9-12.3.9.A.2	The inverse trigonometric functions are called arcsine, arccosine, and arctangent (also represented as $\sin^{-1}x$, $\cos^{-1}x$, and $\tan^{-1}x$). Because the corresponding trigonometric functions are periodic, they are only invertible if they have restricted domains.
MA.9-12.3.9.A.3	In order to define their respective inverse functions, the domain of the sine function is restricted to $[-\pi/2, \pi/2]$, the cosine function to $[0, \pi]$, and the tangent function to $(-\pi/2, \pi/2)$.
MA.9-12.3.10.A.1	Inverse trigonometric functions are useful in solving equations and inequalities involving trigonometric functions, but solutions may need to be modified due to domain restrictions.
MA.9-12.3.10.A.2	Because trigonometric functions are periodic, there are often infinitely many solutions to trigonometric equations.
MA.9-12.3.10.A.3	In trigonometric equations and inequalities arising from a contextual scenario, there is often a domain restriction that can be implied from the context, which limits the number of solutions.
MA.9-12.3.11.A.1	The secant function, $f(\theta) = \sec \theta$, is the reciprocal of the cosine function, where $\cos \theta \neq 0$.
MA.9-12.3.11.A.2	The cosecant function, $f(\theta) = \csc \theta$, is the reciprocal of the sine function, where $\sin \theta \neq 0$.
MA.9-12.3.11.A.3	The graphs of the secant and cosecant functions have vertical asymptotes where cosine and sine are zero, respectively, and have a range of $(-\infty, -1] \cup [1, \infty)$.
MA.9-12.3.11.A.4	The cotangent function, $f(\theta) = \cot \theta$, is the reciprocal of the tangent function, where $\tan \theta \neq 0$. Equivalently, $\cot \theta = \cos \theta / \sin \theta$, where $\sin \theta \neq 0$.

MA.9-12.3.11.A.5	The graph of the cotangent function has vertical asymptotes for domain values where $\tan \theta = 0$ and is decreasing between consecutive asymptotes.
MA.9-12.3.12.A.1	The Pythagorean Theorem can be applied to right triangles with points on the unit circle at coordinates ($\cos \theta$, $\sin \theta$), resulting in the Pythagorean identity: $\sin^2 \theta + \cos^2 \theta = 1$.
MA.9-12.3.12.A.2	The Pythagorean identity can be algebraically manipulated into other forms involving trigonometric functions, such as $\tan^2 \theta = \sec^2 \theta - 1$, and can be used to establish other trigonometric relationships, such as $\arcsin x = \arccos(\sqrt{1 - x^2})$, with appropriate domain restrictions.
MA.9-12.3.12.B.1	The sum identity for sine is $sin(\alpha + \beta) = sin \alpha \cos \beta + cos \alpha \sin \beta$.
MA.9-12.3.12.B.2	The sum identity for cosine is $\cos(\alpha + \beta) \cos \alpha \cos \beta - \sin \alpha \sin \beta$.
MA.9-12.3.12.B.3	The sum identities for sine and cosine can also be used as difference and double-angle identities.
MA.9-12.3.12.B.4	Properties of trigonometric functions, known trigonometric identities, and other algebraic properties can be used to verify additional trigonometric identities.
MA.9-12.3.12.C.1	A specific equivalent form involving trigonometric expressions can make information more accessible.
MA.9-12.3.12.C.2	Equivalent trigonometric forms may be useful in solving trigonometric equations and inequalities.
MA.9-12.3.13.A.1	The polar coordinate system is based on a grid of circles centered at the origin and on lines through the origin. Polar coordinates are defined as an ordered pair, (r, θ) , such that $ r $ represents the radius of the circle on which the point lies, and θ represents the measure of an angle in standard position whose terminal ray includes the point. In the polar coordinate system, the same point can be represented many ways.
MA.9-12.3.13.A.2	The coordinates of a point in the polar coordinate system, (r, θ) , can be converted to coordinates in the rectangular coordinate system, (x, y) , using $x = r \cos \theta$ and $y = r \sin \theta$.
MA.9-12.3.13.A.3	The coordinates of a point in the rectangular coordinate system, (x, y) , can be converted to coordinates in the polar coordinate system, (r, θ) , using $r = \sqrt{(x^2 + y^2)}$ and $\theta = \arctan(y/x)$ for $x > 0$ or $\theta = \arctan(y/x) + \pi$ for $x < 0$.
MA.9-12.3.13.A.4	A complex number can be understood as a point in the complex plane and can be determined by its corresponding rectangular or polar coordinates. When the complex number has the rectangular coordinates (a, b) , it can be expressed as $a + bi$. When the complex number has polar coordinates (r, θ) , it can be expressed as $(r \cos \theta) + i(r \sin \theta)$.
MA.9-12.3.14.A.1	The graph of the function $r = f(\theta)$ in polar coordinates consists of input- output pairs of values where the input values are angle measures and the output values are radii.
MA.9-12.3.14.A.2	The domain of the polar function $r = f(\theta)$, given graphically, can be

	restricted to a desired portion of the function by selecting endpoints corresponding to the desired angle and radius.
MA.9-12.3.14.A.3	When graphing polar functions in the form of $r = f(\theta)$, changes in input values correspond to changes in angle measure from the positive <i>x</i> -axis, and changes in output values correspond to changes in distance from the origin.
MA.9-12.3.15.A.1	If a polar function, $r = f(\theta)$, is positive and increasing or negative and decreasing, then the distance between $f(\theta)$ and the origin is increasing.
MA.9-12.3.15.A.2	If a polar function, $r = f(\theta)$, is positive and decreasing or negative and increasing, then the distance between $f(\theta)$ and the origin is decreasing.
MA.9-12.3.15.A.4	The average rate of change of r with respect to θ over an interval of θ is the ratio of the change in the radius values to the change in θ over an interval of θ . Graphically, the average rate of change indicates the rate at which the radius is changing per radian.
MA.9-12.3.15.A.5	The average rate of change of r with respect to θ over an interval of θ can be used to estimate values of the function within the interval.

Suggested Modifications for Special Education, ELL and Gifted Students

- Anchor charts to model strategies.
- Review Algebra concepts to ensure students have the information needed to progress in understanding.
- Pre-teach pertinent vocabulary.
- Provide reference sheets that list formulas, step-by-step procedures, theorems, and modeling of strategies.
- Word wall with visual representations of mathematical terms.
- Teacher modeling of thinking processes involved in solving, graphing, and writing equations.
- Introduce concepts embedded in real-life context to help students relate to the mathematics involved.
- Record formulas, processes, and mathematical rules in reference notebooks.
- Graphing calculator to assist with computations and graphing of trigonometric functions.
- Utilize technology through interactive sites to represent nonlinear data.
- Graphic organizers to help students interpret the meaning of terms in an expression or equation in context.
- Translation dictionary.

• Sentence stems to provide additional language support for ELL students.

Suggested Technological Innovations/Use

- TI-84 graphing calculator
- Desmos

Cross Curricular/21st Century Connections Model interdisciplinary thinking to expose students to other disciplines.

Model interdisciplinary thinking to expose students to other disciplines.

Art connection:

Name of Task: Math Music NJSLS: 1.3B.12. Cr1a

A pure tone produces a sine wave when shown on an oscilloscope. When an instrument is played, the tone is not pure. For instance, when a guitar string or piano string vibrates it does not produce a simple sine wave. It does produce other, less distinguishable harmonious waves of higher pitch called harmonic waves. For instance, y = sin (2x) is called the second harmonic, y = sin (3x) is called the third harmonic, and y = sin (4x) is called the fourth harmonic.

Science Connection:

Name of Task: Rabbits, Rabbits Everywhere NJSLS: HS-LS4-2, HS-LS4-3, HS-LS4-5

The rabbit population in a national park rises and falls throughout the year. The population is at its approximate minimum of 6000 rabbits in December. As the weather gets warmer and food becomes more available, the population grows to its approximate maximum of 16,000 rabbits in June. The function describing the rabbit population is f(x)=

5000sin 6x-2+11,000 where x is the time in months and f(x) is the rabbit population.

Name of Task: Speed of CD-RW NJSLS: HS-PS2-1, HS-PS2-2

A CD-RW has a diameter of 120 millimeters. When playing audio, the angular speed varies to keep the linear speed constant where the disc is being read. When reading along the outer edge of the disc, the angular speed is about 200 RPM (revolutions per minute).

- 1. Find the linear speed.
- 2. What would the angular speed be when you reach half of the CD?
- 3. When being burned in this writable CD-R drive, the angular speed of the CD is often much faster than when playing audio, but the angular speed still varies to keep the linear speed constant where the disc is being written. When writing along the outer edge of the disc, the angular speed of one drive is about 4800 RPM (revolutions per minute). Find the linear speed.

Unit 4 Functions Involving Parameters, Vectors, and Matrices

Content Area: **Mathematics** Course(s): **AP PreCalculus** Time Period: 4th Marking Period

Section Title Unit 4 Functions Involving Parameters, Vectors, and Matrices

Enduring Understandings

Students will be able to

- o Evaluate sets of parametric equations for given values of the parameter.
- Graph curves that are represented by sets of parametric equations with and without graphing calculators.
- Rewrite sets of parametric equations as single rectangular equations by eliminating the parameters.
- Use time as a parameter in parametric equations.
- Find parametric equations for curves defined by rectangular equations.
- Represent vectors as directed line segments.
- Write the component forms of vectors.
- o Perform basic vector operations and represent vectors graphically.
- o Write vectors as linear combination of unit vectors.
- Find the direction angles of vectors.
- Use vectors to model and solve real-life problems.
- o Find the dot product of two vectors and use the properties of the dot product.
- Find the angle between two vectors and determine whether two vectors are orthogonal.
- Write vectors as the sums of two vector components.
- \circ Use vectors to find the work done by a force.
- Find the distance between two points in space.
- \circ How do you use matrices to solve system of equations?

Summary of the Unit

Parametric equations can be used to model the path of an object. These objects can be represented by conics (ellipses, parabolas, and hyperbolas). Conics are applied in real-world situations, such as orbits of planets, flashlights, and satellites. Since conics are not always functions, they can be defined using parametric equations. The study of vectors is crucial in applied mathematics. Vectors relate to geometry, trigonometry, and physics.

Essential Questions

- How can we determine when the populations of species in an ecosystem will be relatively steady?
- How can we analyze the vertical and horizontal aspects of motion independently?
- How does high resolution computer generated imaging achieve smooth and realistic motion on screen with so many pixels?
- What is a vector in the plane?
- How do you represent and perform operations with vector quantities?
- How do you write a vector as a sum of two vector components?
- What is the dot product? How is it used to analyze vectors?
- What makes a vector orthogonal?
- What do vector quantities signify in real life situations?
- How do you locate points, and find distances in three dimensions?

Summative Assessment and/or Summative Criteria Required District/State Assessments

- SGO Pre Assessment
- SGO Post Assessment

Suggested Formative/Summative Classroom Assessments

- Describe Learning Vertically
- Identify Key Building Blocks
- Make Connections (between and among crucial building blocks)
- Short/Extended Constructed Response Items
- Multiple-Choice Items (where multiple answer choices may be correct)
- Drag and Drop Items
- Use of Equation Editor
- Quizzes
- Journal Entries/Reflections/Quick-Writes
- Accountable talk
- Projects
- Portfolio
- Observation
- Graphic Organizers/ Concept Mapping
- Presentations
- Teacher-Student and Student-Student Conferencing
- AP Classroom Assessments created with specific sections outlined.
- WebAssign Problem Sets <u>WebAssign Instructor Help</u>
- Homework
- Students will take formal assessments, such as tests and quizzes, to assess knowledge of concepts learned throughout the unit.
- Students will also demonstrate mastery through various assessment criteria included in the unit such as do nows, exit slips, graded classwork activities and assignments, and/or projects.

Resources

- AP Daily Videos: Section 4.1 4.2
- AP Daily Videos: Section 4.4, 4.7
- AP Daily Videos: Section 4.8
- AP Daily Videos: Section 4.10- 4.11
- AP Precalculus Course Overview: <u>https://apcentral.collegeboard.org/courses/ap-precalculus/course</u>
- AP Precalculus Course and Exam Description: <u>https://apcentral.collegeboard.org/media/pdf/apprecalculus-course-and-exam-description.pdf</u>
- AP Precalculus Practice Exam: <u>https://apcentral.collegeboard.org/media/pdf/ap-precalculus-practice-exam-multiple-choice-section.pdf</u>
- AP Precalculus Classroom Resources: <u>https://apcentral.collegeboard.org/courses/ap-</u>

precalculus/classroom-resources

- Classpad.net (Casio): <u>https://classpad.net/us/</u>
- Desmos: <u>https://www.desmos.com/</u>
- Geogebra: <u>https://www.geogebra.org/?lang=en</u>
- Math Open Reference: <u>https://www.mathopenref.com/</u>
- TI Education (Texas Instruments): https://education.ti.com/en
- WolframAlpha: <u>https://www.wolframalpha.com/</u>
- Wolfram MathWorld: <u>https://mathworld.wolfram.com/</u>
- Khan Academy: https://www.khanacademy.org/math/precalculus
- Digital Mathematics Word Wall: http://www.mathwords.com/index_adv_alg_precal.htm
- Extra Notes for Pre-Calculus Content: <u>https://sites.google.com/a/evergreenps.org/ms-griffin-s-math-classes/updates</u>
- Review Documents for Pre-Calculus: <u>https://sites.google.com/site/dgrahamcalculus/trigpre-calculus/trig-pre-calculus-worksheets</u>
- Pre-Calculus IXL Topics and Resources: https://www.ixl.com/math/precalculus
- Classroom Challenges to Support Teachers in Formative Assessments: <u>http://map.mathshell.org/materials/lessons.php?gradeid=24</u>
- Applications of Function Models: <u>https://www.ck12.org/algebra/Applications-of-Function-Models-BSC-ALG/?referrer=featured_content</u>
- Statistics Education Web (STEW). <u>http://www.amstat.org/education/STEW/</u>
- The Data and Story Library (DASL). <u>http://lib.stat.cmu.edu/DASL/</u>
- <u>WebAssign Instructor Resources</u>
- WebAssign Student Resources
- Cengage Learning: PreCalculus with Limits A Graphing Approach, Sixth Edition

Topic/Selection Timeframe	General Objectives	Instructional Activities	Benchmarks/Assessments	Standards
4.1 Parametric Functions	SWBAT Construct a graph or table of	Students would be able to determine when is it	Circulate and monitor student progress as they are working on classwork.	4.1.A.1
(2 days)	(2 days) values for a parametric function represented analytically.	advantageous to define curves parametrically: Students will work in groups to determine	 Have students complete problems at the board. Through questioning students 	4.1.A.2
		the orientation of a curve, and thus the usefulness of		4.1.A.3
	equations. will be able to describe ho quantities change with respect to each other in a parametric function.	will be able to describe how quantities change with respect to each other in a parametric function.	4.1.A.5	
			Closure	

Unit Plan

4.2 Parametric	SWBAT Identify	Students will	Circulate and monitor student	4.2.A.1
Functions	key	determine to write	progress as they are working	
Modeling Planar	characteristics of	equations to describe	on classwork.	
Motion	a parametric	the motion of a point		10.00
	planar motion	in a plane they need		4.2.A.2
(2 days)	function that are	to introduce a third	Have students complete	
	related to	variable, or a	problems at the board	
	position.	parameter,	problems at the board.	4.2.A.3
		parametric equations		
		with those involving		
		only x and y.	Through questioning students	
			will be able to determine how	
			do you write equations to	
			describe the motion of a point	
			in a plane.	
			Closure	

4.4Parametrically defined Circles and Lines(2 days)	SWBAT express motion around a circle or along a line segment parametrically	Students will determine a complete counterclockwise revolution around the unit circle that starts and ends at (1, 0) and is centered at the origin can be modeled by relating x and y to cost and sint with restricted domain.	Circulate and monitor student progress as they are working on classwork. Have students complete problems at the board. Through questioning students will be able to determine transformation of the parametric function (x, y) = (cost, sint) can be model any circular path transverse in the plane.	4.4.A.1 4.4.A.2
			Closure	
4.7 Parametrization of Implicitly	SWBAT represent a curve in the plane	Students will determine parametrization for an implicitly defined	Circulate and monitor student progress as they are working on classwork.	4.7.A.1
Functions (4 days)	parametricany.	function in terms of third variable will satisfy the corresponding equation for every value in the domain.	Have students complete problems at the board.	4.7.A.2
			Through questioning students will be able to determine how to determine the domain of the function after parametrization.	
			Closure	

4.8 Vectors	SWBAT Identify	As a class discuss the	Circulate and monitor student	4.8.A.1
	characteristics of	properties of vectors	progress as they are working	
(5 days)	a vector.	algebraically and	on classwork.	
		geometrically.		
				4.8.A.2
		Explain and model	TT . 1 . 1 .	
	SWBAT	the definition of two-	Have students complete	
	Determine sums	dimensional vectors.	problems at the board.	4843
	and products	M. 1.1		1.0.1 1.5
	involving	Model vector		
	vectors.	addition numerically	Through questioning students	
		and geometrically.	will be able to describe	4.8.A.4
		Multiplying a Vector	motion of an object using	
	SWBAT	by a Scalar	vectors.	
	Determine a unit	by a Sealar.		1001
	vector for a	Explain and model		4.8.B.1
	given vector.	the definition of two-		
	C	dimensional vectors.	Closure	
				4.8.B.2
		Geometric		
	SWBAT	Interpretation of Dot	Students will be given a unit	
	Determine angle	Product: Applies the	test that assesses their	
	measures	dot product to	understanding of the concents	4.8.B.3
	between vectors	scenarios such as	and skills from the material	
	and magnitudes	determining the	on two-dimensional vectors	
	of vectors	angle between two	and will contain open ended	4.9.0.1
	involved in	vectors and using the	problem solving which	4.8.C.1
	vector addition.	dot product to prove	includes both short	
		If a vector is	constructed response and	
		orthogonal.	extended response questions.	4.8.C.2
				4.8.D.1
				4802
4 10 Matrices	SWBAT	Students will	Circulate and monitor student	4 10 Δ 1
	Determine the	discover that matrix	progress as they are working	T.10.A.1
(2 days)	product of two	multiplication	on classwork	
(· J -)	matrices	computes the		
		composition of two		4.10.A.2
		linear		
		transformations	Have students complete	
			problems at the board.	
		Two matrix can be		
		multiplied if the		

		number of columns in the first matrix equals the number of rows in the second matrix.	Through questioning students will be able to determine matrix multiplication computes the composition of two linear transformations.	
4 11 The Inverse	SWBAT	Students will be able	Closure Circulate and monitor student	<u>4 11 A 1</u>
and Determinant of a Matrix	Determine the inverse of a 2 X	to determine how to represent system of	progress as they are working on classwork.	1.11.21.1
(4 days)	2 matrix.	equations in matrix form and by manipulating matrices to find solutions.	Have students complete problems at the board.	4.11.A.2
				4.11.A.3
			Through questioning students will be able to determine the way a linear system matches up with a matrix.	
			Closure	
MA.9-12.4.1.A.1 A parametric function in \mathbb{R}^2 , the set of all ordered pairs of two real numbers,				
	consists of a set of two parametric equations in which two dependent variables, x and y , are dependent on a single independent variable, t , called the parameter.			
MA.9-12.4.1.A.2	Becau coordi expres case x	Because variables x and y are dependent on the independent variable, t, the coordinates (x_i, y_i) at time t_i can be written as functions of t and can be expressed as the single parametric function $f(t) = (x(t), y(t))$, where in this case x and y are names of two functions.		
MA.9-12.4.1.A.3	A nun f(t) = domai	A numerical table of values can be generated for the parametric function $f(t) = (x(t), y(t))$ by evaluating x_i and y_i at several values of t_i within the domain.		
MA.9-12.4.1.A.4	A grap points	bh of a parametric functi from the numerical tabl	ion can be sketched by connectir le of values in order of increasing	ng several g value of <i>t</i> .

MA.9-12.4.1.A.5	The domain of the parametric function f is often restricted, which results in start and end points on the graph of f .
MA.9-12.4.2.A.1	A parametric function given by $f(t) = (x(t), y(t))$ can be used to model particle motion in the plane. The graph of this function indicates the position of a particle at time t.
MA.9-12.4.2.A.2	The horizontal and vertical extrema of a particle's motion can be determined by identifying the maximum and minimum values of the functions $x(t)$ and y(t), respectively.
MA.9-12.4.2.A.3	The real zeros of the function $x(t)$ correspond to y-intercepts, and the real zeros of $y(t)$ correspond to x-intercepts.
MA.9-12.4.4.A.1	A complete counterclockwise revolution around the unit circle that starts and ends at (1, 0) and is centered at the origin can be modeled by $(x(t), y(t))$ = (cos t, sin t) with domain $0 \le t \le 2\pi$.
MA.9-12.4.4.A.2	Transformations of the parametric function $(x(t), y(t)) = (\cos t, \sin t) \operatorname{can}$ model any circular path traversed in the plane.
MA.9-12.4.4.A.3	A linear path along the line segment from the point (x_1, y_1) to the point (x_2, y_2) can be parametrized many ways, including using an initial position (x_1, y_1) and rates of change for x with respect to t and y with respect to t.
MA.9-12.4.7.A.1	A parametrization $(x(t), y(t))$ for an implicitly defined function will, when $x(t)$ and $y(t)$ are substituted for x and y, respectively, satisfy the corresponding equation for every value of t in the domain.
MA.9-12.4.7.A.2	If f is a function of x, then $y = f(x)$ can be parametrized as $(x(t), y(t)) = (t, f(t))$. If f is invertible, its inverse can be parametrized as $(x(t), y(t)) = (f(t), t)$ for an appropriate interval of t.
MA.9-12.4.7.B.1	A parabola can be parametrized in the same way that any equation that can be solved for x or y can be parametrized. Equations that can be solved for x can be parametrized as $(x(t), y(t)) = (f(t), t)$ by solving for x and replacing y with t. Equations that can be solved for y can be parametrized as $(x(t), y(t)) = (t, f(t))$ by solving for y and replacing x with t.
MA.9-12.4.7.B.2	An ellipse can be parametrized using the trigonometric functions $x(t) = h + a \cos t$ and $y(t) = k + b \sin t$ for $0 \le t \le 2\pi$.
MA.9-12.4.7.B.3	A hyperbola can be parametrized using trigonometric functions. For a hyperbola that opens left and right, the functions are $x(t) = h + a$ sec t and $y(t) = k + b$ tan t for $0 \le t \le 2\pi$. For a hyperbola that opens up and down, the functions are $x(t) = h + a$ tan t and $y(t) = k + b$ sec t for $0 \le t \le 2\pi$.
MA.9-12.4.8.A.1	A vector is a directed line segment. When a vector is placed in the plane, the point at the beginning of the line segment is called the tail, and the point at the end of the line segment is called the head. The length of the line segment is the magnitude of the vector.
MA.9-12.4.8.A.2	A vector P_1P_2 with two components can be plotted in the <i>xy</i> -plane from $P_1 = (x_1, y_1)$ to $P_2 = (x_2, y_2)$. The vector is identified by <i>a</i> and <i>b</i> , where $a = x_2 - x_2$

	x_1 and $b = y_2 - y_1$. The vector can be expressed as a, b . A zero vector $(0, 0)$ is the trivial case when $P_1 = P_2$.
MA.9-12.4.8.A.3	The direction of the vector is parallel to the line segment from the origin to the point with coordinates (a, b) . The magnitude of the vector is the square root of the sum of the squares of the components.
MA.9-12.4.8.A.4	For a vector represented geometrically in the plane, the components of the vector can be found using trigonometry.
MA.9-12.4.10.A.1	An $n \times m$ matrix is an array consisting of n rows and m columns.
MA.9-12.4.10.A.2	Two matrices can be multiplied if the number of columns in the first matrix equals the number of rows in the second matrix. The product of the matrices is a new matrix in which the component in the <i>i</i> th row and <i>j</i> th column is the dot product of the <i>i</i> th row of the first matrix and the <i>j</i> th column of the second matrix.
MA.9-12.4.11.A.1	The identity matrix, <i>I</i> , is a square matrix consisting of 1s on the diagonal from the top left to bottom right and 0s everywhere else.
MA.9-12.4.11.A.2	Multiplying a square matrix by its corresponding identity matrix results in the original square matrix.
MA.9-12.4.11.A.3	The product of a square matrix and its inverse, when it exists, is the identity matrix of the same size.
MA.9-12.4.11.A.4	The inverse of a 2×2 matrix, when it exists, can be calculated with or without technology.
MA.9-12.4.11.B.1	The determinant of the matrix $A = [a \text{ over } b, c \text{ over } d]$ is $ad - bc$. The determinant can be calculated with or without technology and is denoted det(A).
MA.9-12.4.11.B.2	If a 2 × 2 matrix consists of two column or row vectors from \mathbb{R}^2 , then the nonzero absolute value of the determinant of the matrix is the area of the parallelogram spanned by the vectors represented in the columns or rows of the matrix. If the determinant equals 0, then the vectors are parallel.
MA.9-12.4.11.B.3	The square matrix A has an inverse if and only if $det(A) \neq 0$.

Suggested Modifications for Special Education, ELL and Gifted Students

- Anchor charts to model strategies.
- Review Algebra concepts to ensure students have the information needed to progress in understanding.
- Pre-teach pertinent vocabulary.
- Provide reference sheets that list formulas, step-by-step procedures, theorems, and modeling of strategies.

- Word wall with visual representations of mathematical terms.
- Teacher modeling of thinking processes involved in solving, graphing, and writing equations.
- Introduce concepts embedded in real-life context to help students relate to the mathematics involved.
- Record formulas, processes, and mathematical rules in reference notebooks.
- Graphing calculator to assist with computations and graphing of trigonometric functions.
- Utilize technology through interactive sites to represent nonlinear data.
- Graphic organizers to help students interpret the meaning of terms in an expression or equation in context.
- Translation dictionary.
- Sentence stems to provide additional language support for ELL students.

Suggested Technological Innovations/Use

4. TI-84 graphing calculator 5. Desmos

Cross Curricular/21st Century Connections

Model interdisciplinary thinking to expose students to other disciplines. Social Studies and ELA Literacy Connection:

Name of Task: Americans' spending: NJSLS: 6.1.12.HistoryCC.16.b, 6.2.12.EconGE.5.a

From July 1998 to July 1999, Americans' spending rose from 5.82 trillion dollars to 6.20 trillion dollars a. Let x = 0 represent July 1998, x = 1 represent August 1998, ..., and x = 12 represent July 1999. Write a

linear equation for Americans' spending in terms of the month x

- b. Use the equation in (a) to predict Americans' spending in July 2002.
- c. Based on the model created in (a) when would the aggregate expenditure exceed 10 trillion dollars?
- d. What part of the US GDP is spent by the Americans in 2013?

Name of Task: Publishing Cost:

A publishing company estimates that the average cost (in dollars) for one copy of a new scenic calendar it plans to produce can be approximated by the function C(x) = (2.25x + 275)/x Where x is the number of calendars printed.

a. Find the average cost per calendar when the company prints 100 calendars.

b. Identify the domain and range of this function.

c. After analyzing the function, Alex said that this company should not be allowed to publish zero

calendars. As a result, the company has no option to shut down and go out of business. Write an argument to support or reject Alex's conclusion.

Science Connection:

Name of Task: Myoglobin and Hemoglobin: NJSLS: HS-LS1-2; HS-LS1-4

Myoglobin and hemoglobin are oxygen-carrying molecules in the human body. Hemoglobin is found inside red blood cells, which flow from the lungs to the muscles through the

bloodstream. Myoglobin is found in muscle cells. The function y = M(p) = p/(1 + p) calculates the fraction of myoglobin saturated with oxygen at a given presure *p* Torrs. For example, at a pressure of 1 Torr, M(1) = 0.5, which means half of the myoglobin (i.e. 50%) is oxygen saturated. (Note: More precisely, you need to use something called the "partial pressure", but the distinction is not important for this problem.) Likewise, the function calculates the fraction of hemoglobin saturated with oxygen at a given pressure *p*. [UW]

0≤p≤100

Which is which?

b. If the pressure in the lungs is 100 Torrs, what is the level of oxygen saturation of the hemoglobin in the lungs?

c. The pressure in an active muscle is 20 Torrs. What is the level of oxygen saturation of myoglobin in an active muscle? What is the level of hemoglobin in an active muscle?

d. Define the efficiency of oxygen transport at a given pressure p to be M(p) - H(p). What is the oxygen transport efficiency at 20 Torrs? At 40 Torrs? At 60 Torrs? Sketch the graph of M(p) - H(p); are there conditions under which transport efficiency is maximized (explain)?

Business Connection :

Name of Task: Minimize the metal in a can: NJSLS: 9.1.12.A.4; W.11-12.1

A manufacturer wants to manufacture a metal can that holds 1000 cm^3 of oil. The can is in the shape of a right cylinder with a radius *r* and height *h*. Assume the thickness of the material used to make the metal can is negligible.

For each question, include correct units of measurement and round your answers to the nearest tenth. Using your knowledge of volume and surface area of a right cylinder, write a function S(r) that represents the surface area of the cylindrical can in terms of the radius, r, of its base. Show in detail your algebraic thinking.

1. Sketch the graph of S(r) and show key features of the graph. State any restriction on the value of r so that it represents the physical model of the can.

2. What dimensions will minimize the quantity of metal needed to manufacture the cylindrical can? Show in detail your mathematical solution.

3. Calculate the minimum value of the function S(r) and interpret the result in the context of the physical model. Show the mathematical steps you used to obtain the answer.

Name of Task: Chemco Manufacturing: NJSLS: 9.1.12.A.4; W.11-12.1

Chemco Manufacturing estimates that its profit P in hundreds of dollars is $P = -4x^2 + 40x + 3$ where x is the number of units produced in thousands.

a. How many units must be produced to obtain the maximum profit?

b. Graph the profit function and identify its vertex.

c. An increase in productivity increased profit by \$7 at each quantity sold. What kind of a transformation would model this situation? Show your work graphically and algebraically.

d. A decrease in marginal cost lead to a 4 units increase in the optimum level of production. What kind of a transformation would model this situation? Show your work graphically and algebraically.