7th Grade STEM Sayreville Middle School Quarter Long Course

Date of Board Approval: Curriculum Writer(s): Kimberly Howard

Statement of Purpose

STEM is a 7th grade quarter elective course. The units are designed to prepare students of varying cognitive abilities to become better problem solvers in today's modern world. STEM is an interdisciplinary educational methodology that includes four specific disciplines - Science, Technology, Engineering and Mathematics - which are taught together in a focused, hands-on approach. Traditionally, students would receive mathematics and science instruction as separate courses with little attention on technology and engineering; however, STEM illustrates and practices the interconnectedness of all 4 disciplines through a hands-on and collaborative approach. Through solving real-world problems, students develop interpersonal communication skills, creativity, decision making skills, leadership skills and critical thinking skills. This prepares our students with the foundation upon which they can continue to add information and advance skills that will enable them to assume their responsibilities as lifelong learners and productive members of a global society. Students will ask questions to define problems more precisely, develop and use models, plan and carry out investigations and analyze and interpret data. They will also utilize Mathematics and Computational thinking skills in order to solve a problem, obtain and evaluate evidence and communicate their findings to both their cooperative workgroup as well as to the class. The focus on real-world application through project-based-learning, the use of technology and the engineering design process, enables students to develop useful 21st-Century skills.

In order to demonstrate a cohesive and complete implementation plan, the following general suggestions are provided:

• The use of various formative assessments is encouraged in order to provide an ongoing method of determining the current level of understanding the students have of the material presented.

- Homework, when assigned, should be relevant and reflective of the current teaching taking place in the classroom.
- Organizational strategies should be in place that allows the students the ability to take the information gained in the classroom and put it into terms that are relevant to them.
- Instruction should be differentiated to allow students the best opportunity to learn.
- Assessments should be varied and assess topics of instruction delivered in class.

• Modifications to the curriculum should be included that address students with Individualized Educational Plans (IEP), English Language Learners (ELL), and those requiring other modifications (504 plans).

Table of Contents:	<u>Page #</u>
Unit 1 - Introduction to STEM and the Engineering Design Process	3
Unit 2 - Rapid Prototyping and 3D Design	11
Unit 3 - Computational Thinking and Robotics	19
Unit 4 - Project Management	29

Unit 1: Introduction to STEM and the Engineering Design Process

Content Area: **Science** Course(s): **STEM** Time Period: Length: **10 days**

Summary of the Unit

STEM is an integrated approach to problem solving. In this unit, students will identify and solve real-world problems using a design-thinking approach. In this unit, students will develop an object, tool, process or system, within a set of design constraints or parameters to solve a problem utilizing the Engineering Design approach. The Engineering Design approach requires students to 1. Ask questions to identify the problem, 2. Brainstorm solutions, 3. Design & Plan their project, 4. Build the project, 5. Test the project and 6. Analyze/Improve and 6. Communicate the results.

Enduring Understandings

Engineers use a design process to develop, test, evaluate, redesign, and communicate design solutions.

Essential Questions

Why is it important to follow a design process when developing solutions to a design challenge? Why should you evaluate design solutions at intervals? What modifications to the design will increase its performance and/or efficiency in accomplishing the task at hand? What can we learn from our mistakes?

Summative Assessment and/or Summative Criteria

Problem solving process, modeling building process, testing process, improving upon design process, articulation of process and design.

Resources

https://www.teachengineering.org/editorspicks

https://tryengineering.org/teacher/

https://www.discoveryeducation.com/

https://www.brainpop.com/teacher

https://www.pbs.org/show/stem/

https://www.birdbraintechnologies.com/

https://msapcenter.ed.gov/stem/STEMResources.aspx?AspxAutoDe

<u>tectCookieSupport=1</u>

https://www.nsf.gov/news/classroom/engineering.jsp

https://www.stemvillage.com/blog/top-6-engineerin

g-education-resources

https://raeng.org.uk/education-and-skills/schools/st

em-resources

https://blog.ck12info.org/top-10-stem-resources/

https://mosamack.com/

http://www.achieve3000.com/

https://betterlesson.com/

https://www.nextgenscience.org/

https://www.stem.org.uk/

https://www.khanacademy.org/

https://student.societyforscience.org/sciencenews-students

http://www.nature.com/

http://ngm.nationalgeographic.com/ http://www.smithsonianmag.com/ http://ngm.nationalgeographic.com/ http://www.popsci.com/ http://www.nasa.gov/ http://www.nasa.gov/ http://www.sciencekids.co.nz/ http://www.howstuffworks.com/ http://www.aurumscience.com/ https://phet.colorado.edu/

<u>Standards</u>

SCI.MS.ETS1.A Defining and Delimiting Engineering Problems

SCI.MS-ETS1-1 Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

SCI.MS-ETS1-2 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

SCI.MS-ETS1-3 Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

SCI.MS-ETS1-4 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Suggested Modifications for Special Education, English Language Learners and Gifted Students:

*Consistent with individual plans, when appropriate.

Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.

Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).

Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tools such as WebEx or Google Meet, experts from the community helping with a project, journal articles, and biographies).

Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).

Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understanding.

Use project-based science learning to connect science with observable phenomena.

Structure the learning around explaining or solving a social or community-based issue.

Provide ELL students with multiple literacy strategies.

Collaborate with after-school programs or clubs to extend learning opportunities.

Restructure lesson using UDL principles (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA)

Suggested Technological Innovations/Use

TED TALKS, Discovery ED, Brain Pop, DIY Channel, Google Classroom, On Course Classroom, Student Chromebooks

Cross Curricular/21st Century Connections

Critical thinking.

Communication skills.

Creativity.

Problem solving.

Perseverance.

Collaboration.

Information literacy.

Technology skills and digital literacy.

Unit Plan

Topic Selection Timeframe	General Objectives	Suggested Instructional Activities	Benchmarks/Assessments	Standards
The Engineerin g Design Process (10 days)	Define the criteria and constraint s of a design problem	The Great STEM Challenge: A shipwrecked traveler is stranded on a desert island. Students will complete 5 different challenges to help get him back to civilization. Island architect- Construct a hut	Rubric for design process Physical prototype	

	Asking Questions	Crocodile Crossing- Build a Bridge Message in a bottle- waterproof container	Peer feedback form Teacher observations	MS-ETS 1.1
D	nd Defining Problems	Pirate defense- coconut catapult Float your boat- raft design	Class participation	MS-ETS 1.2
de	Define a lesign problem hat can	The Coast Guard has asked you to design a flotation device in case of emergency. Use action figurine to	Final product and explanation	MS-ETS 1.3
be th th de	e solved hrough he levelopm	design a floatation device that can be easily attached to the figurine and provide buoyancy	Revamping of initial model and explanation	MS-ETS 1.4
ol to pi oi ai in m	nt of an object, ool, process or system nd ncludes nultiple riteria	<u>Kid Spark</u> Engineering Materials and Engineering Design Challenges - STEM Pathways Lab	Lab form with hypothesis, results and analysis stated, and any pertinent graphing.	
ai co s, in so	nd onstraint	Create a structure to hold a bucket with as many ping pong balls as possible.	STEM journal/packet of building and brainstorming process.	
e lin po	that may mit ossible olutions.	A device is needed to safely land water dropped from the sky to help aide California in the water drought. Incorporate Switlik parachutes and the local History of Amelia Earhart base jumping to test them near Six Flags.		
		Floatation device for an action figurine		
				8

	Evaluate competin g design solutions Engaging in Argument from Evidence Evaluate competin g design solutions based on jointly developed and agreed-up on design criteria. Using a systemati c process to determine how well they meet the criteria and constraint s of the problem.	 Build a structure from straws to hold a cup, purpose being to have the cup hold as much weight as possible without collapsing The bridge that connects Sayreville to the Parkway is in need of a rebuild. Taking into account the land topography, design a bridge to hold as much weight as possible. Egg drop device https://stem.neu.edu/resources/activities/eggdrop/ Students will work in groups of 3 or 4 to design and build an egg drop device. The students will be given a budget and defined list of materials that they can 'purchase' to protect their egg. Describe and define material properties. Identify the forces of gravity, drag, and the term air resistance Bridges http://teachers.egfi-k12.org/ta g/civil-engineering/ http://www.pbs.org/wgbh/nov a/education/ideas/2416 bridg e.html Groups of students will design and create a bridge 	
		a/education/ideas/2416_bridg e.html Groups of students will	9
			5

The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinemen t and ultimately to an optimal solution.	as toothpicks, string, rubber-bands, and glue. Each group has to study the different types of bridges in order to determine which type will best suit the requirements placed on them. They will also draw a layout of their bridge from different perspectives. Students will need to apply for a small business loan in order to finance their endeavor. They will then need to develop a budget and keep track of their finances in a ledger. When their bridges are finished we will do a stress test and an earthquake-shearing test on them.	
	Parachutes This lesson focuses on parachute design. Teams of students construct parachutes from everyday materials. They then test their parachutes to determine whether they can transport a metal washer to a target on the ground with the slowest possible rate of descent. Mosa Mack Design Thinking Unit https://mosamack.com/home/ design-thinking	

Unit 2: Rapid Prototyping and 3D Design

Content Area: **Science** Course(s): **STEM** Time Period: Length: **10 days**

Enduring Understandings

Rapid prototyping is a method that can be used to quickly produce and test a new physical product or scale model. Rapid prototyping is the fast fabrication of a physical part, model or assembly using 3D computer aided design (CAD). "Prototypes are routinely used as part of the product design process to give engineers and designers the ability to explore design alternatives, test theories and confirm performance prior to starting production of a new product. Almost every engineering discipline uses prototypes in some way, including aerospace, computer, mechanical, civil, environmental and electrical engineering."

https://www.teachengineering.org/activities/view/cub_creative_activity5

Summary of the Unit

In this unit, students will design and build a prototype of an object for a specific purpose, then troubleshoot and design a part that needs repair or is missing. Students will learn basic CAD software in order to spatially manipulate objects to prepare for 3D fabrication. Additional advanced materials will be available for those students who would like to explore CAD in even greater detail.

Essential Questions

What is rapid prototyping? What is needed for a rapid prototype? How do we explore design alternatives through the creation and testing of prototypes? What is the difference between a prototype and a model? How might we compare and contrast the use of different construction materials in the development of prototypes?

Summative Assessment and/or Summative Criteria

Student Final Projects, Rapid prototyping and CAD assessment, Kidspark Unit Assessment, problem solving process, articulation of process and design, student slide presentations

Resources

- https://kidsparkeducation.org/
- kidsparkeducation.org/downloads
- simplify3d.com/support/print-quality-troubleshooting/
- weareteachers.com/3d-printing-math-science/
- resourced.prometheanworld.com/use-3d-printers-classroom/
- https://www.tinkercad.com/
- https://learn.birdbraintechnologies.com/finch/snap/program/1-1
- https://www.teachengineering.org/editorspicks
- https://tryengineering.org/teacher/
- https://www.discoveryeducation.com/
- https://www.brainpop.com/teacher
- https://www.pbs.org/show/stem/
- https://www.birdbraintechnologies.com/
- https://msapcenter.ed.gov/stem/STEMResources.aspx?AspxAutoDetectCookieSupport=1
- https://www.nsf.gov/news/classroom/engineering.jsp
- https://www.stemvillage.com/blog/top-6-engineering-education-resources
- https://raeng.org.uk/education-and-skills/schools/stem-resources
- https://blog.ck12info.org/top-10-stem-resources/
- https://mosamack.com/
- http://www.achieve3000.com/

https://betterlesson.com/

https://www.nextgenscience.org/

https://www.stem.org.uk/

https://www.khanacademy.org/

https://student.societyforscience.org/sciencenews-students

http://www.nature.com/

http://ngm.nationalgeographic.com/

http://www.smithsonianmag.com/

http://ngm.nationalgeographic.com/

http://www.popsci.com/

http://www.nasa.gov/

http://www.sciencekids.co.nz/

http://www.howstuffworks.com/

http://www.aurumscience.com/

https://phet.colorado.edu/

https://www.hhmi.org/biointeractive

http://mw.concord.org/modeler/index.html

Standards

SCI.MS.ETS1.A Defining and Delimiting Engineering Problems

SCI.MS-ETS1-1 Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

SCI.MS-ETS1-2 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

SCI.MS-ETS1-3 Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

SCI.MS-ETS1-4 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

TECH.9.4.2.CI.1 Demonstrate openness to new ideas and perspectives (e.g., 1.1.2.CR1a, 2.1.2.EH.1, 6.1.2.CivicsCM.2).

TECH.9.4.2.CI.2 Identify career pathways that highlight personal talents, skills and abilities.

TECH.9.4.2.CT.1 Identify possible approaches and resources to execute a plan (e.g., 1.2.2.CR1b, 8.2.2.ED.3). Advancements in computing technology can change individuals' behaviors. Society is faced with trade-offs due to the increasing globalization and automation that computing brings.

TECH.9.4.2.CT.2 Explain the potential benefits of collaborating to enhance critical thinking and problem solving.

TECH.9.4.2.CT.3 Use a variety of types of thinking to solve problems (e.g., inductive, deductive).

Suggested Modifications for Special Education, English Language Learners and Gifted Students:

*Consistent with individual plans, when appropriate.

Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.

Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).

Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tools such as WebEx or Google Meet, experts from the community helping with a project, journal articles, and biographies).

Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).

Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understanding.

Use project-based science learning to connect science with observable phenomena.

Structure the learning around explaining or solving a social or community-based issue.

Provide ELL students with multiple literacy strategies.

Collaborate with after-school programs or clubs to extend learning opportunities.

Restructure lesson using UDL principles (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA)

Suggested Technological Innovations/Use

TED TALKS, Discovery ED, Brain Pop, DIY Channel, Google Classroom, On Course Classroom, Student Chromebooks

Cross Curricular/21st Century Connections

Critical thinking.

Communication skills.

Creativity.

Problem solving.

Perseverance.

Collaboration.

Information literacy.

Technology skills and digital literacy.

Unit Plan

Topic/Selection Timeframe	General Objectives	Instructional Activities	Benchmarks Assessments	Standards
Rapid Prototyping	Students will learn how to	Students will start	Rapid Prototyping and	MS-ETS 1.1
and 3D Design	create custom 3D printed parts	out using engineering	CAD Assessment	MS-ETS 1.2
(10 days)	using CAD software. Parts	materials to assemble an	Student Final Project -	MS-ETS 1.3
	will be printed if equipment is	airplane model that is	rubric graded	MS-ETS 1.4
	available. Students will also	missing a propeller.	Daily work checks	TECH.9.4.2.CI.1
	utilize pre-	Then, students will	Do Now checks	TECH.9.4.2.CI.2
	printed 3D parts	set up a Tinkercad account and	Peer Feedback	
	and CAD	explore	Class	
	software to	the Tinkercad	Participation	
	create	workspace.		
	a prototype to		Teacher	
	solve a problem.	Students will	Observation	
	Students will	explore a 3D		
	then physically	virtual	Final Product	
	build their	parts library.	Explanation	
	prototype.	Students will also		
		learn how to		
		import		
		and manipulate		
		objects in		
		Tinkercad		
		as they prepare		
		to create a new		
		propeller for the		
		airplane they		
		built.		
		Students will		
		learn how to use some		

Unit 3: Computational Thinking and Robotics

Content Area: **Science** Course(s): **STEM** Time Period: Length: **10 days**

Enduring Understandings

Computational thinking is a set of skills and processes that enable students to navigate complex problems. Complex problems can be broken down into smaller steps to ease the problem solving process. Computational thinking is a four-step process that includes: decomposition, pattern recognition, abstraction and algorithmic thinking. Computational thinking can be applied to nearly any type of problem.

Summary of the Unit

In this unit, students will demonstrate computational thinking skills and program a robot utilizing the SNAP programming language. Students will learn basic SNAP coding and explore how to control and program a robot to create an original final project based on specific design requirements. They will learn basic movement, lights, sound and use of the robots inputs (sensors) to design and have their robot tell a story. Additional advanced materials are available for those students who would like to explore coding in even greater detail.

Essential Questions

What is Computational thinking? How can I break a problem down into smaller parts in order to make it easier to solve? What are the elements used in computational thinking and how can they help me work my way through a complex problem? Does computational thinking vary by discipline?

Summative Assessment and/or Summative Criteria

Student Final Projects, Computational thinking assessment, problem solving process, articulation of process and design, student slide presentations

Resources

https://learn.birdbraintechnologies.com/finch/snap/program/1-1

https://www.teachengineering.org/editorspicks

https://tryengineering.org/teacher/

https://www.discoveryeducation.com/

https://www.brainpop.com/teacher

https://www.pbs.org/show/stem/

https://www.birdbraintechnologies.com/

https://msapcenter.ed.gov/stem/STEMResources.aspx?AspxAutoDetectC

ookieSupport=1 https://www.nsf.gov/news/classroom/engineering.jsp

https://www.stemvillage.com/blog/top-6-engineering-educ

ation-resources

https://raeng.org.uk/education-and-skills/schools/stem-res

ources

https://blog.ck12info.org/top-10-stem-resources/

https://mosamack.com/

http://www.achieve3000.com/

https://betterlesson.com/

https://www.nextgenscience.org/

https://www.stem.org.uk/

https://www.khanacademy.org/

https://student.societyforscience.org/sciencenews-studentshttp://www.nature.com/http://ngm.nationalgeographic.com/http://www.smithsonianmag.com/http://ngm.nationalgeographic.com/http://ngm.nationalgeographic.com/http://www.popsci.com/http://www.nasa.gov/http://www.sciencekids.co.nz/http://www.howstuffworks.com/http://www.aurumscience.com/http://www.aurumscience.com/

Standards

SCI.MS.ETS1.A Defining and Delimiting Engineering Problems

SCI.MS-ETS1-1 Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

SCI.MS-ETS1-2 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

SCI.MS-ETS1-3 Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

SCI.MS-ETS1-4 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

TECH.9.4.2.CI.1 Demonstrate openness to new ideas and perspectives (e.g., 1.1.2.CR1a, 2.1.2.EH.1, 6.1.2.CivicsCM.2).

TECH.9.4.2.CI.2 Identify career pathways that highlight personal talents, skills and abilities.

TECH.9.4.2.CT.1 Identify possible approaches and resources to execute a plan (e.g., 1.2.2.CR1b, 8.2.2.ED.3). Advancements in computing technology can change individuals' behaviors. Society is faced with trade-offs due to the increasing globalization and automation that computing brings.

TECH.9.4.2.CT.2 Explain the potential benefits of collaborating to enhance critical thinking and problem solving.

TECH.9.4.2.CT.3 Use a variety of types of thinking to solve problems (e.g., inductive, deductive).

Suggested Modifications for Special Education, English Language Learners and Gifted Students:

*Consistent with individual plans, when appropriate.

Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.

Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).

Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tools such as WebEx or Google Meet, experts from the community helping with a project, journal articles, and biographies).

Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).

Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understanding.

Use project-based science learning to connect science with observable phenomena.

Structure the learning around explaining or solving a social or community-based issue.

Provide ELL students with multiple literacy strategies.

Collaborate with after-school programs or clubs to extend learning opportunities.

Restructure lesson using UDL principles (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA)

Suggested Technological Innovations/Use

TED TALKS, Discovery ED, Brain Pop, DIY Channel, Google Classroom, On Course Classroom, Student Chromebooks

Cross Curricular/21st Century Connections

Critical thinking.

Communication skills.

Creativity.

Problem solving.

Perseverance.

Collaboration.

Information literacy.

Technology skills and digital literacy.

Unit Plan

Topic/Selection Timeframe	General Objectives	Instructional Activities	Benchmarks Assessments	Standards
Computational Thinking and	Thinking and Robotics	Students will sign on to	Coding and Robotics	MS-ETS 1.1
Robotics	(10 days)	the Cornell.edu or	Assessment	MS-ETS 1.2
(10 days)	Students will	Birdbrain technologies	Student Final Project -	MS-ETS 1.3
	learn how to connect,	website and learn how to	rubric graded	MS-ETS 1.4
	charge, and start	sync and set up their robot	Daily work checks	TECH.9.4.2.Cl.1
	programming a robot using	for use with the student	Do Now checks	TECH.9.4.2.CI.2
	SNAP as the programming	Chromebooks.	Peer Feedback	TECH.9.4.2.CT.1
	language. Students will	Students will learn how to	Class Participation	TECH.9.4.2.CT.2
	learn how to	use the SNAP Move and	Teacher	TECH.9.4.2.CT.3
	program various output functions.	SNAP Turn blocks.	Observation	
	Students will	Students will learn how to	Final Product Explanation	
	learn how to	control the	Explanation	
	program input functions.	robot's wheels independently using the		
	Students will create an original	Wheels and Stop blocks.		
	project and	Students will		
	utilize their robot to tell a	learn how to program the full		
	story.	color LEDs in your		
		robot's beak		
		Coding and Robotics		

 · · · ·	
Assessment	
Student Final	
Project -	
rubric graded	
Daily work checks	
Do Now checks	
Peer Feedback	
Class	
Participation	
Teacher	
Teacher Observation	
Final Product	
Explanation	
MS-ETS 1.1	
MS-ETS 1.2	
MS-ETS 1.3	
MS-ETS 1.4	
TECH.9.4.2.Cl.1	
TECH.9.4.2.CI.2	
TECH.9.4.2.CT.1	
TECH.9.4.2.CT.2	
TECH.9.4.2.CT.3	
Students will	
create an	
original	
project and utilize their	
robot to tell a	
story.	

and tail. They will	
also	
learn how to	
program the	
LED screen.	
Students will	
learn about	
controlling the	
sounds and	
buzzers on their	
robot.	
Students will	
learn how to	
use the different	
kinds of	
inputs, or	
sensors,	
available on their	
robot:	
distance sensor	
2 light sensors	
2 infrared line-	
following sensors	
2 micro:bit	
buttons	
accelerometer	
(can	
sense tilt)	
compass (can	
sense direction)	
Students will	
learn to use	
the blocks for the	
micro:bit buttons	
and	
orientation.	
These blocks	
have Boolean	
values, or	
values that can	
only be	
true or false.	
I	

Advanced students can	
learn on loops	
and	
variables.	
Students will use	
at least 3	
of the 5 different	
sensors/features	
of the	
robot and	
demonstrate	
use certain	
features of	
SNAP to tell an	
original	
story.	

Unit 4: Project Management

Content Area: **Science** Course(s): **STEM** Time Period: Length: **10 days**

Summary of the Unit

Activities in this unit are designed to reinforce group understanding of the nature of project management. In this unit, students will organize a building project from start to finish. Building on their understanding of the engineering design process from Unit 1, students will research, design, plan and build the project within given design constraints. The project will require students to manage their time, work cooperatively and purchase materials within a given budget while dealing with real-world challenges along the way.

Enduring Understandings

Engineers use a design process to develop, test, evaluate, redesign, and communicate design solutions. The constraining factors of scope, time, and budget affect the outcome of a project and should be managed proactively. Project managers are responsible for planning and oversight of projects to ensure they are completed on time and on budget.

Essential Questions

What are best practices when managing a project from start to finish? When is the deadline? Have you had a similar project before? How will the team communicate during the course of the project? What role will each individual team member assume? What tools will be used? What are the project's priorities? Why is it important to follow a design process when developing solutions to a design challenge? Why should you evaluate design solutions at intervals? What modifications to the design will increase its performance and/or efficiency in accomplishing the task at hand? What can we learn from our mistakes? What challenges and risks do you think these projects would face on their way to completion? How do you think project managers could keep these projects on track? What technological tools do you think would help in managing these projects?

Summative Assessment and/or Summative Criteria

Problem solving process, modeling building process, testing process, improving upon design process, articulation of process and design, accounting budgeting worksheet

Resources

https://wiresources.dpi.wi.gov/courseware/lesson/311/overview

https://www.teachengineering.org/editorspicks

https://tryengineering.org/teacher/

https://www.discoveryeducation.com/

https://www.brainpop.com/teacher

https://www.pbs.org/show/stem/

https://www.birdbraintechnologies.com/

https://msapcenter.ed.gov/stem/STEMResources.aspx?AspxAutoDe

tectCookieSupport=1

https://www.nsf.gov/news/classroom/engineering.jsp

https://www.stemvillage.com/blog/top-6-engineeri

ng-education-resources

https://raeng.org.uk/education-and-skills/schools/

stem-resources

https://blog.ck12info.org/top-10-stem-resources/

https://mosamack.com/

http://www.achieve3000.com/

https://betterlesson.com/

https://www.nextgenscience.org/

https://www.stem.org.uk/

https://www.khanacademy.org/

https://student.societyforscience.org/sciencenews-students

http://www.nature.com/

http://ngm.nationalgeographic.com/

http://www.smithsonianmag.com/

http://ngm.nationalgeographic.com/

http://www.popsci.com/ http://www.nasa.gov/

http://www.sciencekids.co.nz/

Standards

SCI.MS.ETS1.A Defining and Delimiting Engineering Problems

SCI.MS-ETS1-1 Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

SCI.MS-ETS1-2 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

SCI.MS-ETS1-3 Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

SCI.MS-ETS1-4 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Suggested Modifications for Special Education, English Language Learners and Gifted Students:

*Consistent with individual plans, when appropriate.

Structure lessons around questions that are authentic, relate to students' interests, social/family background and knowledge of their community.

Provide students with multiple choices for how they can represent their understandings (e.g. multisensory techniques-auditory/visual aids; pictures, illustrations, graphs, charts, data tables, multimedia, modeling).

Provide opportunities for students to connect with people of similar backgrounds (e.g. conversations via digital tools such as WebEx or Google Meet, experts from the community helping with a project, journal articles, and biographies).

Provide multiple grouping opportunities for students to share their ideas and to encourage work among various backgrounds and cultures (e.g. multiple representation and multimodal experiences).

Engage students with a variety of Science and Engineering practices to provide students with multiple entry points and multiple ways to demonstrate their understanding.

Use project-based science learning to connect science with observable phenomena.

Structure the learning around explaining or solving a social or community-based issue.

Provide ELL students with multiple literacy strategies.

Collaborate with after-school programs or clubs to extend learning opportunities.

Restructure lesson using UDL principles (http://www.cast.org/our-work/about-udl.html#.VXmoXcfD_UA)

Suggested Technological Innovations/Use

TED TALKS, Discovery ED, Brain Pop, DIY Channel, Google Classroom, On Course Classroom, Student Chromebooks

Cross Curricular/21st Century Connections

Critical thinking.

Communication skills.

Creativity.

Problem solving.

Perseverance.

Collaboration.

Information literacy.

Technology skills and digital literacy.

Unit Plan

Topic/Selection	General	Instructional	Benchmarks	Standards
Timeframe	Objectives	Activities	Assessments	

Project	Define the	Building a	Dubuic fou design	MS-ETS 1.1
Management	criteria and	toothpick bridge -	Rubric for design	
(10 days)	constraints	Students will be	process	MS-ETS 1.2
	of a design	challenged to		
	problem	design		MS-ETS 1.3
	Asking	and build a bridge	Physical	
	Questions	constructed	prototype	MS-ETS 1.4
	and Defining	entirely of	prototype	
	Problems	toothpicks and		
		glue.		
	Define a	Students will	Peer feedback	
	design	learn about and	form	
	problem that	then research the	_	
	can be	different types of		
	solved	bridges.		
	through the		Teacher	
	development	They will work	observations	
	of an object,	together		
	tool, process	collaboratively in		
	or system	group roles and		
	and includes	be	Class	
	multiple	required to keep	participation	
	criteria and	track of time and		
	constraints,	a budget in order		
	including	to complete		
	scientific	the project on	Final product and	
	knowledge	time. They will	explanation	
	that may	also be "charged		
	limit	a hazardous		
	possible	waste	Revamping of	
	solutions.	fee" when they	initial model and	
	_	leave a mess	explanation	
	Evaluate	behind in the	capitaliation	
	competing	classroom.		
	design			
	solutions	They will need to	STEM	
	Engaging in	purchase supplies	journal/packet of	
	Argument	and will be faced	building and	
	from	with real-	brainstorming	
	Evidence	life scenarios,	process.	
		such as price	-	
	Evaluate	fluctuations in		
	competing	material		
	design	components.		
	solutions			
	based on			
	jointly			

developed	Bridges are	
	required to	
and agreed-	support a certain	
upon design	amount of weight	
	that	
criteria.	will be hung from	
Using a	the bridge. The	
systematic	more weight	
process to	supported, the	
determine	more points	
how well	earned.	
they meet		
the criteria	Instructional	
and	Activities MAY	
constraints	include Unit 1	
of the	listed activities	
problem.	but	
	MUST also	
The iterative	incorporate the	
process of	time/budget	
testing the	constraints.	
most		
promising	The Great STEM	
solutions	Challenge:	
and	A shipwrecked	
modifying	traveler is	
what is	stranded on a	
proposed on	desert island.	
the basis of	Students	
the test	will complete 5	
results leads	different	
to greater	challenges to help	
refinement	get him back to	
and	civilization. Island	
ultimately to	architect-	
an optimal	Construct a hut	
solution.	Crocodile	
	Crossing- Build a	
	Bridge	
	Message in a	
	bottle-	
	waterproof	
	container	
	Pirate defense-	
	coconut catapult	
	Float your boat-	
	raft design	

The Coast Guard	
has asked you to	
design a flotation	
device in case	
of emergency.	
Use action	
figurine to design	
a floatation	
device	
that can be easily	
attached to the	
figurine and	
provide buoyancy	
A device is	
needed to safely	
land water	
dropped from the	
sky to	
help aide	
California in the	
water drought.	
Incorporate	
Switlik	
parachutes and	
the local History	
of Amelia Earhart	
base jumping	
to test them near	
Six Flags.	
Students would	
have a budget to	
spend	
on materials and	
a limited amount	
of time to	
complete.	
Floatation device	
for an action	
figurine	
Build a structure	
from straws to	
hold a cup,	
purpose being to	
have	

r	
	the cup hold as
	much weight as
	possible without
	collapsing
	The bridge that
	connects
	Sayreville to the
	Parkway is in
	need of a
	rebuild. Taking
	into account the
	land topography,
	design a bridge
	to hold as much
	weight as
	possible.
	Possialer
	Egg drop device
	https://stem.neu.
	edu/resources/ac
	tivities/eggdrop/
	Students will
	work in groups of
	3 or 4 to design
	and build an egg
	drop device. The
	students will be
	given a budget
	and defined list
	of materials that
	they can
	'purchase' to
	protect their egg.
	Describe and
	define material
	properties. Identify the
	forces of gravity,
	drag, and the
	term air
	resistance
	Bridges
	http://teachers.e
	gfi-k12.org/tag/ci
	vil-engineering/

http://www.pbs.	
org/wgbh/nova/e	
ducation/ideas/2	
416_bridge.htm	
l Groups of	
students will	
design and create	
a bridge out of	
various	
materials such as	
toothpicks, string,	
rubber-bands,	
and glue. Each	
group has to	
study the	
different types of	
bridges in order	
to	
determine which	
type will best suit	
the requirements	
placed on	
them. They will	
also draw a	
layout of their	
bridge from	
different	
perspectives.	
Students will	
need to apply for	
a small business	
loan in order to	
finance their	
endeavor. They	
will then need to	
develop a budget	
and keep track of	
their finances in a	
ledger.	
When their	
bridges are	
finished we will	
do a stress test	
and an	
earthquake-shear	
ing test on them.	

1	
Parachutes	
This lesson	
focuses on	
parachute design.	
Teams of	
students	
construct	
parachutes from	
everyday	
materials. They	
then test	
their parachutes	
to determine	
whether they can	
transport a metal	
washer to a	
target on the	
ground with the	
slowest possible	
rate of	
descent.	