10_Graphing Non-Linear Functions

Content Area:
Course(s):
Time Period: Length: Status:

Math
Full Year
2 weeks (8-10 blocks)
Published

General Overview, Course Description or Course Philosophy

This unit will focus on strengthening the prerequisite skills and conceptual understanding needed to graph non-linear functions. Lesson activities will reinforce new content and address common misconceptions and errors to support students' progress toward graphing non-linear functions.

OBJECTIVES, ESSENTIAL QUESTIONS, ENDURING UNDERSTANDINGS

Objectives/Enduring Understandings:

Students will understand that:

- Key features can be used to graph and transform functions
- Non-linear graphs can be used to solve a problem or predict an outcome

Essential Questions:

- What are some operations on functions that you can use to create models and solve problems?

CONTENT AREA STANDARDS

MA.F-IF.C.7e

MA.F-IF.C.8b
MA.K-12.2
MA.K-12.4
MA.K-12.5
MA.K-12.7
MA.K-12.8
MA.A-REI.D. 10

Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Use the properties of exponents to interpret expressions for exponential functions.
Reason abstractly and quantitatively.
Model with mathematics.
Use appropriate tools strategically.
Look for and make use of structure.
Look for and express regularity in repeated reasoning.
Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

Utilize critical thinking to make sense of problems and persevere in solving them.
Use technology to enhance productivity increase collaboration and communicate effectively.

Work productively in teams while using cultural/global competence.

STUDENT LEARNING TARGETS

Declarative Knowledge

Students will understand that:

- Each point on the graph of a curve is a solution to the equation
- Solution sets from a table are connected to the graphical representation of an equation in two variables
- Exponential functions can represent growth or decay

Procedural Knowledge

Students will be able to:

- Determine key features of exponential and logarithmic functions (intercepts, domain/range, shape of exponential growth and decay, end behavior)
- Graph exponential and logarithmic functions using transformation of the parent function

EVIDENCE OF LEARNING

Formative Assessments

- Student daily participation
- Student self-assessment
- Skills checklist
- Student-friendly proficiency scales
- Teacher feedback
- Assessment Reflection

RESOURCES (Instructional, Supplemental, Intervention Materials)

- Kuta Software
- Quizizz
- Desmos
- Delta Math
- Nearpod
- Khan Academy
- Assessment Reflection

INTERDISCIPLINARY CONNECTIONS

- Graphs of non-linear functions can be used to model and interpret a variety of realworld situations
- Graphs of non-linear functions can be used to compare and contrast information gained from research and experimentation in history, social studies, and the sciences

ACCOMMODATIONS \& MODIFICATIONS FOR SUBGROUPS

See link to Accommodations \& Modifications document in course folder.

