02: Momentum & Energy

Content Area:	Special Education
Course(s):	
Time Period:	Full Year
Length:	4 weeks
Status:	Published

General Overview, Course Description or Course Philosophy

Physical Science establishes a basic approach to the fundamentals of chemistry and physics. The following concepts will be explored: atomic structure, chemical bonding, chemical reactions, the periodic table, kinetic theory, and kinematics. The use of technology to gather and analyze data will be incorporated. This course is concept-oriented with a focus on Chemistry and Physics in the real world. Laboratory work and special projects will facilitate active learning and accommodate different learning styles.

OBJECTIVES, ESSENTIAL QUESTIONS, ENDURING UNDERSTANDINGS

Students will understand that:

• Energy exists in various forms and can be transformed from one form to another (Law of Conservation of Energy).

- The mechanical energy of a system is the sum of its kinetic and potential.
- Kinetic and potential energy are descriptions of the forms that energy can have.
- Work is the result of the displacement of an object under the action of a force.

CONTENT AREA STANDARDS

SCI.HS-PS2-2	Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
SCI.HS-PS3-2	Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).
SCI.HS-PS3-3	Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

RELATED STANDARDS (Technology, 21st Century Life & Careers, ELA Companion Standards are Required)

MA.K-12.4	Model with mathematics.
MA.K-12.5	Use appropriate tools strategically.
MA.K-12.6	Attend to precision.
MA.K-12.8	Look for and express regularity in repeated reasoning.
LA.RST.11-12.3	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
LA.RST.11-12.8	Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
LA.WHST.11-12.6	Use technology, including the Internet, to produce, share, and update writing products in response to ongoing feedback, including new arguments or information.
LA.WHST.11-12.7	Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
LA.WHST.11-12.9	Draw evidence from informational texts to support analysis, reflection, and research.
TECH.9.4.12.CT	Critical Thinking and Problem-solving
TECH.9.4.12.CT.1	Identify problem-solving strategies used in the development of an innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3).
TECH.9.4.12.CT.2	Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).
TECH.9.4.12.CT.3	Enlist input from a variety of stakeholders (e.g., community members, experts in the field) to design a service learning activity that addresses a local or global issue (e.g., environmental justice).

Student Learning Targets

EVIDENCE OF LEARNING

Refer to the 'Formative Assessments' and 'Summative Assessments' sections.

Formative Assessments

- Checks for understanding during lesson
- Online feedback (CK-12)
- Do Now activities.
- Student-centered questioning and discussion that is facilitated by instructor.

• Exit Tickets.

Summative Assessments

- Benchmarks departmental benchmark given at the end of MP1, MP2, and MP3
- Alternative Assessments
 - Lab inquiries and investigations
 - Lab Practicals
 - Exploratory activities based on phenomenon
 - Gallery walks of student work
 - Creative Extension Projects
 - Build a model of a proposed solution
 - Let students design their own flashcards to test each other
 - Keynote presentations made by students on a topic
 - Portfolio

RESOURCES (Instructional, Supplemental, Intervention Materials)

physicsclassroom.com Vernier.com/experiments Khan Academy, Crash Course Physics, and Bozeman Science

INTERDISCIPLINARY CONNECTIONS

Algebra, ELA/Literacy, Geometry

ACCOMMODATIONS & MODIFICATIONS FOR SUBGROUPS

See link to Accommodations & Modifications document in course folder.