03: Gravity & Satellite Motion

Special Education
Full Year
4 weeks
Published

General Overview, Course Description or Course Philosophy

Physical Science establishes a basic approach to the fundamentals of chemistry and physics. The following concepts will be explored: atomic structure, chemical bonding, chemical reactions, the periodic table, kinetic theory, and kinematics. The use of technology to gather and analyze data will be incorporated. This course is concept-oriented with a focus on Chemistry and Physics in the real world. Laboratory work and special projects will facilitate active learning and accommodate different learning styles.

OBJECTIVES, ESSENTIAL QUESTIONS, ENDURING UNDERSTANDINGS

Students will understand that:

- Gravity is a fundamental attractive force between masses.
- Gravity causes masses to attract to the center of mass.

• Gravity is proportional to the product of the masses and inversely proportional to the square of the distance between them.

CONTENT AREA STANDARDS

SCI.HS-ESS1-4

Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.

RELATED STANDARDS (Technology, 21st Century Life & Careers, ELA Companion Standards are Required)

MA.K-12.1	Make sense of problems and persevere in solving them.
MA.K-12.2	Reason abstractly and quantitatively.
MA.K-12.3	Construct viable arguments and critique the reasoning of others.
MA.K-12.4	Model with mathematics.
MA.K-12.5	Use appropriate tools strategically.
MA.K-12.6	Attend to precision.
TECH.9.4.12.CT.1	Identify problem-solving strategies used in the development of an innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3).
TECH.9.4.12.CT.2	Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a).

TECH.9.4.12.CT.3	Enlist input from a variety of stakeholders (e.g., community members, experts in the field) to design a service learning activity that addresses a local or global issue (e.g., environmental justice).
TECH.9.4.12.CT.4	Participate in online strategy and planning sessions for course-based, school-based, or other project and determine the strategies that contribute to effective outcomes.

EVIDENCE OF LEARNING

Refer to the 'Formative Assessments' and 'Summative Assessments' sections.

Formative Assessments

- Checks for understanding during lesson
- Online feedback (CK-12)
- Do Now activities.
- Student-centered questioning and discussion that is facilitated by instructor.
- Exit Tickets.

Summative Assessments

- Benchmarks departmental benchmark given at the end of MP1, MP2, and MP3
- Alternative Assessments
 - Lab inquiries and investigations
 - Lab Practicals
 - Exploratory activities based on phenomenon
 - Gallery walks of student work
 - Creative Extension Projects
 - Build a model of a proposed solution
 - Let students design their own flashcards to test each other
 - Keynote presentations made by students on a topic
 - Portfolio

RESOURCES (Instructional, Supplemental, Intervention Materials)

physicsclassroom.com Vernier.com/experiments Khan Academy, Crash Course Physics, and Bozeman Science

INTERDISCIPLINARY CONNECTIONS

Algebra, English, Geometry

ACCOMMODATIONS & MODIFICATIONS FOR SUBGROUPS

See link to Accommodations & Modifications document in course folder.