04: Astronomy Content Area: Special Education Course(s): Time Period: Full Year Length: 4 weeks Status: Published ### **General Overview, Course Description or Course Philosophy** Physical Science establishes a basic approach to the fundamentals of chemistry and physics. The following concepts will be explored: atomic structure, chemical bonding, chemical reactions, the periodic table, kinetic theory, and kinematics. The use of technology to gather and analyze data will be incorporated. This course is concept-oriented with a focus on Chemistry and Physics in the real world. Laboratory work and special projects will facilitate active learning and accommodate different learning styles. #### **OBJECTIVES, ESSENTIAL QUESTIONS, ENDURING UNDERSTANDINGS** Students will understand that: - Astronomers learn about the Universe by careful observation of light. - The Sun and Earth formed billions of years ago. - The Universe started in an explosion called the Big Bang. - We are well situated in the Milky Way Galaxy to support life. #### **CONTENT AREA STANDARDS** SCI.HS-ESS1-2 Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. SCI.HS-ESS1-3 Communicate scientific ideas about the way stars, over their life cycle, produce elements. # RELATED STANDARDS (Technology, 21st Century Life & Careers, ELA Companion Standards are Required) | MA.K-12.1 | Make sense of problems and persevere in solving them. | |-----------|---| | MA.K-12.2 | Reason abstractly and quantitatively. | MA.K-12.3 Construct viable arguments and critique the reasoning of others. MA.K-12.4 Model with mathematics. MA.K-12.5 Use appropriate tools strategically. | MA.K-12.6 | Attend to precision. | |------------------|---| | MA.K-12.7 | Look for and make use of structure. | | MA.K-12.8 | Look for and express regularity in repeated reasoning. | | LA.RST.11-12.3 | Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text. | | LA.RST.11-12.8 | Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. | | LA.WHST.11-12.6 | Use technology, including the Internet, to produce, share, and update writing products in response to ongoing feedback, including new arguments or information. | | TECH.9.4.12.CT.1 | Identify problem-solving strategies used in the development of an innovative product or practice (e.g., 1.1.12acc.C1b, 2.2.12.PF.3). | | TECH.9.4.12.CT.2 | Explain the potential benefits of collaborating to enhance critical thinking and problem solving (e.g., 1.3E.12profCR3.a). | | TECH.9.4.12.CT.3 | Enlist input from a variety of stakeholders (e.g., community members, experts in the field) to design a service learning activity that addresses a local or global issue (e.g., environmental justice). | | TECH.9.4.12.CT.4 | Participate in online strategy and planning sessions for course-based, school-based, or other project and determine the strategies that contribute to effective outcomes. | | | | ### **INTERDISCIPLINARY CONNECTIONS** Algebra, ELA/Literacy, Geometry ### **EVIDENCE OF LEARNING** Refer to the 'Formative Assessments' and 'Summative Assessments' sections. ### **Formative Assessments** - Checks for understanding during lesson - Online feedback (CK-12) - Do Now activities. - Student-centered questioning and discussion that is facilitated by instructor. - Exit Tickets. #### **Summative Assessments** - Benchmarks departmental benchmark given at the end of MP1, MP2, and MP3 - Alternative Assessments - Lab inquiries and investigations - Lab Practicals - Exploratory activities based on phenomenon - Gallery walks of student work - Creative Extension Projects - Build a model of a proposed solution - Let students design their own flashcards to test each other - Keynote presentations made by students on a topic - Portfolio ## **RESOURCES (Instructional, Supplemental, Intervention Materials)** physicsclassroom.com Vernier.com/experiments Khan Academy, Crash Course Physics, and Bozeman Science #### **ACCOMMODATIONS & MODIFICATIONS FOR SUBGROUPS** See link to Accommodations & Modifications document in course folder.