10: Elements, Compounds, & Mixtures

Content Area:	Special Education
Course(s):	
Time Period:	Full Year
Length:	4 weeks
Status:	Published

General Overview, Course Description or Course Philosophy

Physical Science establishes a basic approach to the fundamentals of chemistry and physics. The following concepts will be explored: atomic structure, chemical bonding, chemical reactions, the periodic table, kinetic theory, and kinematics. The use of technology to gather and analyze data will be incorporated. This course is concept-oriented with a focus on Chemistry and Physics in the real world. Laboratory work and special projects will facilitate active learning and accommodate different learning styles.

OBJECTIVES, ESSENTIAL QUESTIONS, ENDURING UNDERSTANDINGS

Students will understand that:

• Matter, on all levels, has predictable properties that can be related to structures of the elements that make up that matter

• Elements and compounds are pure substances. Elements cannot be decomposed into simpler materials by chemical reactions.

• Elements can react to form compounds. Elements and/or compounds may also be physically combined to form mixtures.

CONTENT AREA STANDARDS

SCI.HS-PS1-1	Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
SCI.HS-PS1-3	Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.

RELATED STANDARDS (Technology, 21st Century Life & Careers, ELA Companion Standards are Required)

CRP 2 Apply appropriate academic and technical skills.

CRP 4 Communicate clearly and effectively and with reason.

CRP 5 Consider the environmental, social and economic impacts of decisions.

CRP 6 Demonstrate creativity and innovation.

CRP 8 Utilize critical thinking to make sense of problems and persevere in solving them.

CRP 11 Use technology to enhance productivity.

EVIDENCE OF LEARNING

Refer to the 'Formative Assessments' and 'Summative Assessments' sections.

Formative Assessments

Observation, do now, homework

Summative Assessments

- Benchmarks departmental benchmark given at the end of MP1, MP2, and MP3
- Alternative Assessments
 - Lab inquiries and investigations
 - Lab Practicals
 - Exploratory activities based on phenomenon
 - Gallery walks of student work
 - Creative Extension Projects
 - Build a model of a proposed solution
 - Let students design their own flashcards to test each other
 - Keynote presentations made by students on a topic
 - Portfolio

RESOURCES (Instructional, Supplemental, Intervention Materials)

Vernier.com/experiments Khan Academy, Crash Course Physics, and Bozeman Science American Chemical Society (acs.org/content/acs/en/education/resources/highschool.html)

ACCOMMODATIONS & MODIFICATIONS FOR SUBGROUPS

See link to Accommodations & Modifications document in course folder.