General Overview, Course Description or Course Philosophy

This course is an extension of Algebra 1. Emphasis is upon the development of insights into the structure of algebra as a deductive process. The content includes function foundations, equations and inequalities, polynomial functions and equations, rational functions and equations, radical expressions and equations, exponential and logarithmic functions and equations, trigonometric functions and equations, introductory data analysis, and probability.

OBJECTIVES, ESSENTIAL QUESTIONS, ENDURING UNDERSTANDINGS

Objectives:

- Conic sections are a cross-section of a cone from various directions
- Conic sections are represented algebraically through distance relationships
- Graph circles, parabolas, ellipse, and hyperbolas
- Identify a conic section from its equation
- Rewrite the general form of a conic to its standard form.

Essential Questions:

- What are conic sections?
- In what situations could you use conic sections to model a relationship?
- What is the intersection of a cone and a plane parallel to a line along the side of the cone?
- What do graphs of conics look like?
- What is the difference between the algebraic representations of ellipses and hyperbolas?
- How are the conic sections related to the equation for distance?

Enduring Understanding:

- A circle is the set of points in a plane equal distance from the same point
- A parabola is the set of points equal distance from a focus point and its directrix
- An ellipse is the set of points that is the sum of distances from two foci
- A hyperbola is the set of points that is the difference between distances from two foci

CONTENT AREA STANDARDS

MA.A-REI.B.4a	Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.
MA.A-REI.D. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
MA.G-GPE.A. 1	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
MA.G-GPE.A. 2	Derive the equation of a parabola given a focus and directrix.
MA.G-GPE.A. 3	Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant.

RELATED STANDARDS (Technology, 21st Century Life \& Careers, ELA Companion Standards are Required)

\(\left.$$
\begin{array}{ll}\text { CS.K-12.4.a } & \text { Extract common features from a set of interrelated processes or complex phenomena. } \\
\text { CS.K-12.4.c } & \begin{array}{l}\text { Create modules and develop points of interaction that can apply to multiple situations and } \\
\text { reduce complexity. }\end{array} \\
\text { CS.K-12.4.d } & \begin{array}{l}\text { Model phenomena and processes and simulate systems to understand and evaluate } \\
\text { potential outcomes. }\end{array}
$$

Lntegrate and evaluate content presented in diverse media and formats, including visually

and quantitatively, as well as in words.\end{array}\right\}\)| Demonstrate creativity and innovation. |
| :--- |
| PFL.9.1.K12.P.4 |
| PFL.9.1.K12.P.5 |
| PFL.9.1.K12.P.6 | | Uodilize critical thinking to make sense of problems and persevere in solving them. ethical leadership and effective management. |
| :--- |
| PFL.9.1.K12.P.8 |

STUDENT LEARNING TARGETS

Refer to the 'Declarative Knowledge' and 'Procedural Knowledge sections.

Declarative Knowledge

Students will understand that:

- Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line)

Procedural Knowledge

Students will be able to:

- Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant
- Derive the equation of a circle of given center and radius using the Pythagorean Theorem.
- Derive the equation of a parabola given a focus and directrix
- Derive the quadratic formula by completing the square.
- Complete the square to find the center and radius of a circle given by an equation
- Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions

EVIDENCE OF LEARNING

Refer to the 'Formative Assessments' and 'Summative Assessments' sections.

Formative Assessments

- Class Discussion
- Teacher observation
- Exit/Entrance Tickets
- Classwork
- Homework

Summative Assessments

- Quizzes
- Test
- Projects

RESOURCES (Instructional, Supplemental, Intervention Materials)

- Sullivan Algebra and Trigonometry Textbook (Chapter 2.4 and 11)
- Khan Academy
- Deltamath
- Illustrative Mathematics Tasks by standard
- Illustrative Mathematics Curriculum
- Desmos
- Reference pages
- Introduction Activity using Technology
- Folding Conic Section Project
- Conic Section Desmos Project

INTERDISCIPLINARY CONNECTIONS

Interdisciplinary connections are frequently addressed through modeling and application problems whereby students solve and analyze situations such as planetary travel, focal point of light, and bridge construction. Examples can be found in topic specific textbook problems and digital resources.

ACCOMMODATIONS \& MODIFICATIONS FOR SUBGROUPS

See link to Accommodations \& Modifications document in course folder.

