Unit 06: A1-Ch. 5 - Linear Functions

Content Area: Math
Course(s): Algebra1 CP, Algebra 1A, Algebra 1H
Time Period: Marking Period 2
Length:
17 Days
Status:
Published

Unit Introduction

Standards

MA.F-BF.B. 3	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
MA.A-CED.A. 1	Create equations and inequalities in one variable and use them to solve problems.
MA.A-CED.A. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
MA.A-CED.A. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
MA.A-CED.A. 4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
MA.A-REI.D. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
MA.A-REI.D. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
MA.A-REI.D. 12	Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Essential Questions

- What does the slope of a line indeicate about the line?
- What information does the equation of a line give you?

Content

- 5.1 - Rate of Change and Slope (1 Day)
- 5.3 - Slope-Intercept Form (2 Days)
- 5.4 - Point-Slope Form (2 Days)
- 5.5 - Standard Form/ X- and Y-Intercepts (2 Days)
- 5.8 - Graphing Absolute Value Functions (Incl. Calculator Work) (2 Days)
- Supplement - Application Problems Involving Linear Equations and Inequalities (Include Distance Applications) (3 Days)
- Supplement - Intro to the Graphing Calculator (Graphing/Tables) (1 Day)
- Supplement - Review Coordinate Plane/Independent \& Dependent Variables (1 Day)

Skills

- Complete Application Problems Involving Linear Equations, Linear Inequalities, and Distance Application Problems
- Describing Transformations
- Find X - and Y -Intercepts
- Finding Rate of Change Using a Table
- Finding Slope Using a Graph
- Finding Slope Using Points
- Finding Slopes of Horizontal and Vertical Lines
- Graphing a Horizontal Translation
- Graphing a Line Using Intercepts
- Graphing a Linear Equation
- Graphing a Vertical Translation
- Graphing Horizontal and Vertical Lines
- Graphing Using Point-Slope Form
- Identifying Slope and Y-Intercept
- Modeling a Function
- Transforming to Standard Form
- Use graphing calculators and technology where appropriate
- Use relevant vocabulary, notations, and symbols when appropriate
- Using a Table to Write an Equation
- Using Standard Form as a Model
- Using Two Points to Write an Equation
- Writing an Equation from a Graph
- Writing an Equation from Two Points
- Writing an Equation in Point-Slope Form
- Writing an Equation in Slope-Intercept Form

