Integrated Alg2 PreCalc Unit 06: Radical Functions and Rational Exponents

Content Area: Math

Course(s): Integrated Algebra II & PreCalculus

Time Period: Semester 1
Length: 2.5 cycles
Status: Published

Unit Introduction

Standards

MA.F-BF.A.1b	Combine standard function types using arithmetic operations.
MA.F-BF.B.4a	Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse.
MA.F-IF.C.8	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
MA.F-IF.C.7b	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
MA.N-RN.A.1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.
MA.N-RN.A.2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.
MA.A-CED.A.4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
MA.A-REI.A.2	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
MA.A-SSE.A	Interpret the structure of expressions
MA.A-SSE.A.2	Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.

Essential Questions

- How are a function and its inverse function related?
- · When you square each side of an equation, is the resulting equation equivalent to the original?

Content

- Binomial Radical Expressions
- Functions Operations

- Graphing Radical Functions
- Inverse Relations and Functions
- Multiplying and Dividing Radical Expressions
- Rational Exponents
- Roots and Radical Expressions
- Solving Square Root and Other Radical Equations

Skills

- Composing functions
- Covert radicals to rational exponent
- Find the equation of an inverse
- Find the inverse of a relation
- Finding an inverse function
- Graph a cube root function
- Graph a square root function
- Graphing a relation and its inverse
- Multiply and divide radical expressions
- Multiply conjugates
- Operations on functions
- Operations on radical expressions
- Rational a denominator
- Rewrite a radical function
- Simplify exponential expressions
- Simplify radicals
- Simplifying a product
- Simplifying a radical expression
- Solve a radical equation by graphing
- Translate a square root function vertically and horizontally
- Using composite functions
- Using radical expressions