PHYSICS AP - C Mechanics
EASTERN REGIONAL HIGH SCHOOLS

COURSE OUTLINE

Class Time: The class meets 7 periods a week. Two double periods are allotted for Laboratory work. Lab consists of at least 20% of course time. The course emphasizes the application of calculus to real physical problems.

Lab Time: The class involves 2 periods a week for laboratory experience. Emphasis is placed on students creating and designing their own experiments from given materials. Most labs do not come with instructions. Students are given a problem and a set of available materials. They set up the experiment, collect the data, analyze the data and must support their conclusions. Students write a formal lab report that is kept in a portfolio. For most labs, students are required to discuss and defend their methods and results with the class.

Course Materials:

Text

Serway and Beichner, *Physics for Scientists and Engineers*, Fifth Edition

1st SEMESTER 18 Weeks - MECHANICS

1. Calculus

- a. Limits
- b. Derivatives
- c. Integration
- d. Setting limits of integration

2. Kinematics

- a. Two dimensional motion
- b. Three dimensional motion
- c. Vectors in three dimensions
- d. Dot and Cross Product
- e. Deriving equations using calculus
- f. Projectile motion
- g. Circular motion
- h. Relative motion

LABS:

1. Tracking Aircraft with vectors

- Students apply 3-D geometry and vectors to calculate the position and velocity of an aircraft. Students are given: rulers, protractors, stop watches. They must find a method to collect data from moving aircraft, and use it to determine the aircrafts motion vectors.

2. Projectile Motion

- students will write the equations for real projectiles and calculate their trajectories. They must predict the range of a water balloon before they ever launch one. They must determine the necessary data and apply the related equations of motion.

3. Newton's Laws

- a. Newton's First Law
- b. Newton's Second Law
- c. Newton's Third Law
- d. Force diagrams
- e. Net force and acceleration
- f. Friction

LABS:

1. Identifying and measuring the forces for a mechanical system - pulleys and tension (Atwood machine)

4. Circular Motion

- a. Centripetal force
- b. Centripetal acceleration
- c. Non-uniform circular motion

LABS:

- 1. Forces in a rotating system friction on a turntable
 - Students, using a turntable and meter stick, must set up an experiment to determine the coefficient of friction between two surfaces.
- 2. Conical Pendulum
 - Students are given: string, protractors, rulers, masses, and a stopwatch. They must set up an experiment which will show the relationship between period, velocity, and displacement angle

5. Resistive forces

- a. Linear friction equations
- b. Velocity dependant forces
- c. Differential equations
- d. The exponential function
- e Time constants
- f. Drag coefficient
- g. Numerical Modeling in Particle Dynamics

LABS:

- 1. Deriving the equation for a bead falling through oil
 - Students will use numerical modeling to write the equation of motion for a falling bead in oil.
- 2. Drag coefficient for a Coffee filter using motion sensors

6. Work-Kinetic Energy

- a. Work done by a constant force
- b. Work-Force integrals
- c. Work done by friction

d. Power

LABS

1. Work done by a non-conservative force: Kinetic Friction Calculation of energy loss for sliding objects.

7. Potential Energy

- a. Conservative forces and Potential Energy
- b. Non-conservative forces
- c. Conservation of Energy
- d. Energy diagrams and equilibrium

LABS

8. Linear Momentum

- a. conservation of linear momentum
- b. impulse
- c. momentum change and force-time integrals
- d. elastic collisions
- e. inelastic collisions
- f. two dimensional collisions
- g. conservation of momentum applied to rocket propulsion

LABS:

1. 2-D collisions: Shuffleboard

9. Angular motion

- a. angular displacement
- b. angular velocity
- c. angular acceleration
- d. rotational energy
- e. torque and angular acceleration
- f. moment of inertia

LABS:

- 1. Moment of Inertia
 - Students will determine the moment of inertia of irregular shaped objects.
- 2. Angular acceleration-sliding/pure rolling motion of a bowling ball

10. Angular momentum

- a. rolling motion of a rigid object
- b. torque and angular momentum
- c. systems of particles
- d, conservation of angular momentum
- e. motion of gyroscopes

LABS

- 1. Conservation of angular momentum using a wheel and rotating chair
 - Students will calculate and write the equations for a real example. They will describe and explain the motion using conservation of angular momentum.

11. Static Equilibrium

- a. conditions for equilibrium torque and force
- b. center of gravity
- c. elastic properties of solids

LABS

- 1. Finding the center of Gravity for irregular shaped objects
- 2. Determine the torque of a motor.
- students are given electric motors. They are to design experiments that will indirectly determine torque using rotational inertial and angular acceleration.

12. Oscillatory motion

- a. Simple Harmonic Motion
- b. calculus and simple harmonic equations
- c. energy in a harmonic oscillator
- d. pendulum
- e. simple differential equations
- f. damped oscillations
- e. resonance

LABS

- 1. Experimentally deriving the period of a pendulum equation: Equations from graphs.
- 2. Simple Harmonic Motion for spring-mass systems

13. Gravity

- a. Newton's Law of universal gravitation
- b. free-fall acceleration
- c. Kepler's laws
- d. Motion of satellites
- e. gravitational fields
- f. gravitational potential energy and the work-force integral
- g. energy of orbits
- h. escape speed
- i. gravity inside of a planet

LABS

1. Measuring G using photogates