
AP Computer Science A 
Syllabus

 

Course Overview 
The purpose of this class is to introduce students to object-oriented programming.   This course 
teaches students to use the standard Java library classes from the AP¨ Java subset given in 
Appendices A and B of the AP Computer Science Course Description. Concepts such as classes, 
objects, inheritance, polymorphism, and code reusability are at the heart of the curriculum. 
Students work in a lab, where constant feedback and help is provided.
 
The AP Computer Science course is given to challenge students to develop critical thinking skills 
with hands on tasks.  My philosophy is very similar to the one in the sample syllabus.  I am the 
“g uide on the side, not the sage on the stage.”   I introduce a new concept that encourages student-
driven learning via questioning and experimentation. I believe in hands-on learning.   During 
classes, I continually monitor student progress and provide individual help as needed. 
 

Texts 
Wu, C. Thomas, An Introduction to Object-Oriented Programming with Java. McGraw Hill, 2006.   
http://www.mhhe.com

Lewis, Loftus, Cocking, Java Software Solutions for AP Computer Science, Addison Wesley, 
2004.
http://www.aw-bc.com/

GridWorld Case Study. The College Board, 2006. 

Corica, Brown, Presley, A Guide To Programming in C++, Lawrenceville Press, 1997.
http://www.lvp.com
Programs from this text are used to teach basic conditional and looping structures only.

 

http://www.lvp.com/
http://www.mhhe.com/


Units of Study

Unit 1: Introduction to Computers and Programming Languages
 
This unit teaches students how to use the Eclipse programming environment and plan their work. 
This is done by learning proper pseudocode and flowchart structures. Students will learn how to use 
simple input/output, primitive data types, the String class, arithmetic expressions and random 
number generation.  The students will cover hardware topics which include main and 
secondary memory location, computer architecture, storage capacity/units, CPUs, 
peripherals, LANs, WANs, packets, TCP/IP, DNS and others.

Sample Student Activities for Unit 1: Practice pseudocode and flowchart, Basic Input/Output, 
Primitive Data Types, Strings, Expressions, Random Input/Output, Ethics, Privacy, Legal Issues, 
Primary and secondary memory, Processors, Peripherals

Resources:
1 •  Lewis, Loftus, Cocking: Chapter 1

 

Unit 2: Conditional Statements and Looping Structures
 
Students learn conditional statements, (if—e lse, if—e lse if, switch) and looping structures (for, while, 
do while).
 
Sample Student Activities for Unit 2: Conditionals, Loops, Code Segments
 
Resources: 
2•  Wu: Chapters 4 and 5
3•  Corica, Brown, Presley: Chapters 4 and 5

 
Unit 3: Defining Your Own Classes
 
Students learn how to define a class with multiple methods and data members. Proper method and 
class structure is emphasized.   They will be able to differentiate between local and instance 
variables.  The students will use value-returning methods.  Students will learn about constructors 
and distinguish between public and private methods.
 
Sample Student Activities for Unit 4: Creating Classes, Modifying/Extending Classes, Methods, 
Constructors



 
Resources: 
1•  Wu: Chapter Four

Unit 4: Defining Your Own Classes Part 2
 
Students will learn how to overload methods and constructors and define class methods and 
variables.  They will use the reserved word this and describe how arguments are passed to 
parameters and how objects are returned from methods.
 
Sample Student Activities for Unit 4: Creating Classes, Modifying/Extending Classes, Methods
 
Resources: 
2•  Wu: Chapter Seven

Unit 5: Arrays, Arrays of Objects, ArrayLists
 
Students will be able to manipulate a collection of data values, using an Array.  They will also be 
able to declare and use an Array of Objects and ArrayLists.  

Sample Student Activities for Unit 5: Comparing programs using Arrays, Arrays of Objects, 
ArrayLists.  Address book program.  Write a method for searching and Array.  Traversals, 
Insertions, Deletions.
 
Resources: 
•  Wu: Chapter 10 

Unit 6: Strings and the API 

Students will use the API to write programs using string manipulation.  They should be able to tell 
the difference between equality and equivalence testing for String objects.

Sample Student Activities for Unit 6: String reversal, String word count, String substitutions, 
Substrings, Upper/Lower case

Resources: 
•  Wu: Chapter 9 



Unit 7: Inheritance and Polymorphism 
Students will learn how to write programs that are easily extended and modifiable by applying 
polymorphism in program design.  Define reusable classes based on inheritance and abstract 
classes and abstract methods.  Differentiate the abstract classes and Java interface.  Protected.

Sample Student Activities for Unit 6: Extended the Address book program, Banking program, Assest 
tracking program.

Resources: 
•  Wu: Chapter 13

Unit 8: Sorting and Searching

Binary search.  Sorting algorithms (Insertion Sort, Selection Sort, and Merge Sort).

1Sample Student Activities:  Understand the algorithms behind the following searching/sorting 
techniques: bubble, selection, and insertion sorts, sequential search and binary search.

Resources: 
•  Wu: Chapter 11

Unit 9: AP GridWorld Case Study
 
AP GridWorld Case Study. 
 
Sample Student Activities
•  GridWorld Role Play Code Walk-Through, GridWorld
Project 1 –  given work with bug variations based on Part 2 of GridWorld Case Study, GridWorld 
Project 2 -  Design your own class based on material in Part 3 of GridWorld Case Study, GridWorld
Project 3 - Design your own Critters based on material in Part 4 of GridWorld Case Study
GridWorld Case Study Practice and Review

Resources: 
1•  AP GridWorld Case Study  

 
Unit 10: Input/Output
 
This unit teaches students how to use input and output streams. Topics include try and catch, 
exceptions, standard I/O, and reading from and writing to text files. 



 
Resources: 
1•  Wu: Chapter 12 

Unit 11: Recursive Algorithms
 
The students will write recursive algorithms for mathematical functions and non-numerical 
operations.  The students will be able to decide when to use recursion and when not to.

Resources: 
2•  Wu: Chapter 15 
3

Unit 12: Review for the AP Exam 
 
Students will review for the AP exam.
 
Resources: 
1•  AP GridWorld Case Study 
2•  Wu: Book 
3•  Handouts 
 

 
Unit 13: Final Project
 
After the exam, the students will write a game or application incorporating all the units.  Graphics will 
be incorporated into the game if time allows.
 
 



Correlation to AP Topic Outline 
 

I. Object-Oriented Program Design 
The overall goal for designing a piece of software (a computer program) is to 
correctly solve the given problem. At the same time, this goal should encompass 
specifying and designing a program that is understandable, can be adapted to 
changing circumstances, and has the potential to be reused in whole or in part. 
The design process needs to be based on a thorough understanding of the 
problem to be solved. 
A. Program design  

1. Read and understands a problem description, purpose, and goals. All 
Units 

2. Apply data abstraction and encapsulation. Units 
1-4

3. Read and understand class specifications and relationships 
among the classes (‘ ‘ is-a,’ ’  ‘ ‘ has-a’ ’  relationships).

Unit 
3,4

4. Understand and implement a given class hierarchy. Unit 
3,4

5. Identify reusable components from existing code using classes 
and class libraries. 

Unit 
3,4

B. Class design  
1. Design and implement a class. Unit 

3,4 
3. Choose appropriate data representation and algorithms.  Units 



2,3,4

4. Apply functional decomposition. Units 
3,4

5. Extend a given class using inheritance. Units 
3,4

II. Program Implementation 
The overall goals of program implementation parallel those of program design. 
Classes that fill common needs should be built so that they can be reused easily 
in other programs. Object-oriented design is an important part of program 
implementation. 
A. Implementation techniques  

1. Methodology  
a. Object-oriented development Unit 

3,4
b. Top-down development Unit 

2,3,4
c. Encapsulation and information hiding Unit 

3,4
d. Procedural abstraction Unit 7

B. Programming constructs  Unit 
2,3,4

1. Primitive types vs. objects Unit 
2,3,4

2. Declaration  
a. Constant declarations Unit 

3,4
b. Variable declarations Unit 

3,4
c. Class declarations Unit 

3,4 
d. Interface declarations Unit 7 
e. Method declarations Unit 

3,4
f. Parameter declarations Unit 

3,4 
3. Console output (System.out.print/println) Unit 1

4. Control  
a. Methods Unit 

3,4
b. Sequential Unit 2
c. Conditional Unit 2
d. Iteration Unit 2
e. Recursion Unit 11



C. Java library classes (included in the A-level (AP Java Subset) Units 
6, 3, 4

III. Program Analysis 
The analysis of programs includes examining and testing programs to determine 
whether they correctly meet their specifications. It also includes the analysis of 
programs or algorithms in order to understand their time and space requirements 
when applied to different data sets. 
A. Testing  

1. Test classes and libraries in isolation. Unit 
3,4

2. Identify boundary cases and generate appropriate test data. Unit 3-
13

3. Perform integration testing. Unit 3-
13 

B. Debugging  
1. Categorize errors: compile-time, run-time, logic. All 

Units
2. Identify and correct errors. All 

Units 
3. Employ techniques such as using a debugger, adding extra output 
statements, or hand-tracing code. 

Units 
4-13

C. Understand and modify existing code Units 
4-13

D. Extend existing code using inheritance Units 
7-13 

E. Understand error handling  
1. Understand runtime exceptions. Units 

3,4
F. Reason about programs  

1. Pre- and post-conditions Unit 
3,4 

2. Assertions Unit 4 
G. Analysis of algorithms  

1. Informal comparisons of running times Unit 
5,8,11

2. Exact calculation of statement execution counts Unit 5, 
8, 11

H. Numerical representations and limits  
1. Representations of numbers in different bases Unit 1 

2. Limitations of finite representations (e.g., integer bounds, 
imprecision of floating-point representations, and round-off error) 

Units 
2, 3, 4



IV. Standard Data Structures 
Data structures are used to represent information within a program. Abstraction is 
an important theme in the development and application of data structures. 

A. Simple data types (int, boolean, double) Unit 1 
B. Classes Units 

3,4 
C. One-dimensional arrays Unit 5 
V. Standard Algorithms 
Standard algorithms serve as examples of good solutions to standard problems. 
Many are intertwined with standard data structures. These algorithms provide 
examples for analysis of program efficiency. 
A. Operations on A-level data structures previously listed  

1. Traversals  Unit 5
2. Insertions Unit 5
3. Deletions Unit 5

B. Searching  
1. Sequential Unit 

5,8
2. Binary Unit 

5,8
C. Sorting  

1. Selection Unit 8
2. Insertion Unit 8
3. Mergesort Unit 8

VI. Computing in Context 
A working knowledge of the major hardware and software components of 
computer systems is necessary for the study of computer science, as is the 
awareness of the ethical and social implications of computing systems. These 
topics need not be covered in detail but should be considered throughout the 
course. 
A. Major hardware components  

1. Primary and secondary memory Unit 1
2. Processors Unit 1
3. Peripherals Unit 1 

B. System software  
1. Language translators/compilers Unit 1 
2. Virtual machines Unit 1 
3. Operating systems Unit 1 

C. Types of systems  
1. Single-user systems Unit 1 
2. Networks Unit 1 

D. Responsible use of computer systems  
1. System reliability Unit 1 



2. Privacy Unit 1 
3. Legal issues and intellectual property Unit 1 
4. Social and ethical ramifications of computer use Unit 1 

1 


	Course Overview 
	 

