Sept. Gr. 6 Unit 1: Applied Technology Content Area: **Technology** Course(s): Time Period: Length: Status: September 4 Weeks Published #### **Unit Overview** To understand the 3d printer and the software that we use to create products. #### **Enduring Understandings** - Learn about different technologies available for fabrication. - Begin to learn how a product is made. - Learn how to design a product. #### **Essential Questions** - What is a 3D printer and how does it work? - What are the limitations of a 3D printer? - How do I begin to create a product? ### **Instructional Strategies & Learning Activities** - Students work in groups to create a presentation about the 3D printer. - Students will learn file structure and how to use a windows based environment. - Students will learn how to use CAD software (cubify invent) ## **Integration of Career Readiness, Life Literacies and Key Skills** | WRK.9.2.8.CAP.3 | Explain how career choices, educational choices, skills, economic conditions, and personal behavior affect income. | |------------------|--| | WRK.9.2.8.CAP.4 | Explain how an individual's online behavior (e.g., social networking, photo exchanges, video postings) may impact opportunities for employment or advancement. | | WRK.9.2.8.CAP.10 | Evaluate how careers have evolved regionally, nationally, and globally. | | WRK.9.2.8.CAP.15 | Present how the demand for certain skills, the job market, and credentials can determine an individual's earning power. | | TECH.9.4.8.CI | Creativity and Innovation | | TECH.9.4.8.CI.2 | Repurpose an existing resource in an innovative way (e.g., 8.2.8.NT.3). | | TECH.9.4.8.CI.3 | Examine challenges that may exist in the adoption of new ideas (e.g., 2.1.8.SSH, 6.1.8.CivicsPD.2). | | TECH.9.4.8.CI.4 | Explore the role of creativity and innovation in career pathways and industries. | | TECH.9.4.8.CT | Critical Thinking and Problem-solving | | TECH.9.4.8.CT.1 | Evaluate diverse solutions proposed by a variety of individuals, organizations, and/or agencies to a local or global problem, such as climate change, and use critical thinking skills to predict which one(s) are likely to be effective (e.g., MS-ETS1-2). | | TECH.9.4.8.CT.2 | Develop multiple solutions to a problem and evaluate short- and long-term effects to determine the most plausible option (e.g., MS-ETS1-4, 6.1.8.CivicsDP.1). | | TECH.9.4.8.CT.3 | Compare past problem-solving solutions to local, national, or global issues and analyze the factors that led to a positive or negative outcome. | | TECH.9.4.8.TL.5 | Compare the process and effectiveness of synchronous collaboration and asynchronous collaboration. | | TECH.9.4.8.GCA | Global and Cultural Awareness | | TECH.9.4.8.GCA.1 | Model how to navigate cultural differences with sensitivity and respect (e.g., 1.5.8.C1a). | | TECH.9.4.8.GCA.2 | Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal. | | | Awareness of and appreciation for cultural differences is critical to avoid barriers to productive and positive interaction. | | | An individual's strengths, lifestyle goals, choices, and interests affect employment and income. | | | Gathering and evaluating knowledge and information from a variety of sources, including global perspectives, fosters creativity and innovative thinking. | | | Multiple solutions often exist to solve a problem. | | | An essential aspect of problem solving is being able to self-reflect on why possible solutions for solving problems were or were not successful. | | | Some digital tools are appropriate for gathering, organizing, analyzing, and presenting information, while other types of digital tools are appropriate for creating text, visualizations, models, and communicating with others. | - Technology Integration Students will use laptops to create a product to solve a problem. - Students will print the product in the 3D printer. - Students will test and review products. #### **Interdisciplinary Connections** - Language Arts: - Presentation - Write ups and reviews of created products - Math: - CAD software - Use of calipers and tape measures #### **Differentiation** - Understand that gifted students, just like all students, come to school to learn and be challenged. - Pre-assess your students. Find out their areas of strength as well as those areas you may need to address before students move on. - Consider grouping gifted students together for at least part of the school day. - Plan for differentiation. Consider pre-assessments, extension activities, and compacting the curriculum. - Use phrases like "You've shown you don't need more practice" or "You need more practice" instead of words like "qualify" or "eligible" when referring to extension work. - Encourage high-ability students to take on challenges. Because they're often used to getting good grades, gifted students may be risk averse. - Definitions of Differentiation Components: - Content the specific information that is to be taught in the lesson/unit/course of instruction. - o Process how the student will acquire the content information. - o Product how the student will demonstrate understanding of the content. - Learning Environment the environment where learning is taking place including physical location and/or student grouping #### **Differentiation occurring in this unit:** Students will be offered support or additional challenges based on interest and skills. #### **Modifications & Accommodations** Refer to QSAC EXCEL SMALL SPED ACCOMMOCATIONS spreadsheet in this discipline. #### **Modifications and Accommodations used in this unit:** IEP and 504 accommodations will be utilized. #### **Benchmark Assessments** **Benchmark Assessments** are given periodically (e.g., at the end of every quarter or as frequently as once per month) throughout a school year to establish baseline achievement data and measure progress toward a standard or set of academic standards and goals. #### Schoolwide Benchmark assessments: Aimsweb benchmarks 3X a year Linkit Benchmarks 3X a year #### Additional Benchmarks used in this unit Teacher made assessments Project rubrics #### **Formative Assessments** Assessment allows both instructor and student to monitor progress towards achieving learning objectives, and can be approached in a variety of ways. **Formative assessment** refers to tools that identify misconceptions, struggles, and learning gaps along the way and assess how to close those gaps. It includes effective tools for helping to shape learning, and can even bolster students' abilities to take ownership of their learning when they understand that the goal is to improve learning, not apply final marks (Trumbull and Lash, 2013). It can include students assessing themselves, peers, or even the instructor, through writing, quizzes, conversation, and more. In short, formative assessment occurs throughout a class or course, and seeks to improve student achievement of learning objectives through approaches that can support specific student needs (Theal and Franklin, 2010, p. 151). | Formative Assessments used in this unit: | | | |--|--|--| | | | | | | | | | Discussion | | | | Teacher observation | | | | projects | | | | | | | | | | | | Summative Assessments | | | | | | | | Summative assessments evaluate student learning, knowledge, proficiency, or success at the conclusion of an instructional period, like a unit, course, or program. Summative assessments are almost always formally graded and often heavily weighted (though they do not need to be). Summative assessment can be used to great effect in conjunction and alignment with formative assessment, and instructors can consider a variety of ways to combine these approaches. | | | | Summative assessments for this unit: | | | | | | | | | | | | | | | | Projects | | | | | | | | | | | | | | | | Instructional Materials Materials as needed for projects | | | | | | | | | | | | Standards | | | | Jean and and and and and and and and and a | | | | TECH.8.1.8.A.1 | Demonstrate knowledge of a real world problem using digital tools. | |------------------|--| | TECH.8.1.8.A.CS1 | Understand and use technology systems. | | TECH.8.1.8.A.CS2 | Select and use applications effectively and productively. | | TECH.8.1.8.B.CS1 | Apply existing knowledge to generate new ideas, products, or processes. | | TECH.8.1.8.C.CS2 | Communicate information and ideas to multiple audiences using a variety of media and formats. | | TECH.8.1.8.C.CS4 | Contribute to project teams to produce original works or solve problems. | | TECH.8.1.8.D.CS2 | Demonstrate personal responsibility for lifelong learning. | | TECH.8.1.8.D.CS3 | Exhibit leadership for digital citizenship. | | TECH.8.2.8.D.1 | Design and create a product that addresses a real world problem using a design process under specific constraints. | | TECH.8.2.8.D.3 | Build a prototype that meets a STEM-based design challenge using science, engineering, and math principles that validate a solution. |