Oct. Math Gr. 8 Equations

Content Area: Math
Course(s):
Time Period: Length: Status:
October
6-8 Weeks
Published

Unit Overview

Solving Simple Equations

- Solving Multi-Step Equations
- Solving Equations with Square Roots
- Solving Equations with Variables on both Sides
- Rewriting Equations and Formulas
- Translating \& Solving Word Problems

Enduring Understandings

SWBAT:

- Write and solve one-step equations
- Write and solve multi-step equations
- Write and solve equations with square roots
- Write and solve equations with variables on both sides
- Solve literal equations for given variables and convert temperatures
- Translate and solve word problems

Essential Questions

How do we write and solve one-step equations?

- How do we write and solve multi-step equations?
- How do we write and solve equations with square roots?
- How do we write and solve equations with variables on both sides?
- How do we solve literal equations for given variables and convert temperatures?
- How do we translate and solve word problems?

Instructional Strategies \& Learning Activities

- Guided Practice
- Do Now
- Extra Practice \& Puzzle Time (Resources)
- Scavenger Hunts
- Coloring Activities
- Task Cards (Around the World)
- Maze Activities
- Quizizz Online Assignments
- Kahoot! Online Games

Integration of Career Readiness, Life Literacies and Key Skills

WRK.9.2.8.CAP
WRK.9.2.8.CAP. 1

WRK.9.2.8.CAP. 2
WRK.9.2.8.CAP. 3

WRK.9.2.8.CAP. 4

WRK.9.2.8.CAP. 10
WRK.9.2.8.CAP. 12

TECH.9.4.8.CI. 4
TECH.9.4.8.CT
TECH.9.4.8.DC. 5

TECH.9.4.8.TL. 2

TECH.9.4.8.TL. 3
TECH.9.4.8.GCA
TECH.9.4.8.GCA. 1

Career Awareness and Planning
Identify offerings such as high school and county career and technical school courses, apprenticeships, military programs, and dual enrollment courses that support career or occupational areas of interest.
Develop a plan that includes information about career areas of interest.
Explain how career choices, educational choices, skills, economic conditions, and personal behavior affect income.

Explain how an individual's online behavior (e.g., social networking, photo exchanges, video postings) may impact opportunities for employment or advancement.

Evaluate how careers have evolved regionally, nationally, and globally.
Assess personal strengths, talents, values, and interests to appropriate jobs and careers to maximize career potential.
Explore the role of creativity and innovation in career pathways and industries.
Critical Thinking and Problem-solving
Manage digital identity and practice positive online behavior to avoid inappropriate forms of self-disclosure.
Gather data and digitally represent information to communicate a real-world problem (e.g., MS-ESS3-4, 6.1.8.EconET.1, 6.1.8.CivicsPR.4).

Select appropriate tools to organize and present information digitally.
Global and Cultural Awareness
Model how to navigate cultural differences with sensitivity and respect (e.g., 1.5.8.C1a).

TECH.9.4.8.GCA. 2	Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal.		
TECH.9.4.8.IML. 1	Critically curate multiple resources to assess the credibility of sources when searching for information.		
TECH.9.4.8.IML. 3	Create a digital visualization that effectively communicates a data set using formatting techniques such as form, position, size, color, movement, and spatial grouping (e.g.,		
6.SP.B.4, 7.SP.B.8b).		\quad	Ask insightful questions to organize different types of data and create meaningful
:---			
visualizations.			

Technology and Design Integration

CS.6-8.8.1.8.CS. 4

CS.6-8.8.1.8.DA. 1

CS.6-8.8.1.8.DA. 2

CS.6-8.8.1.8.DA. 3
CS.6-8.8.1.8.IC. 1

CS.6-8.8.2.8.ED. 2
CS.6-8.8.2.8.ITH. 1

CS.6-8.8.2.8.ITH. 2

Systematically apply troubleshooting strategies to identify and resolve hardware and software problems in computing systems.

Organize and transform data collected using computational tools to make it usable for a specific purpose.

Explain the difference between how the computer stores data as bits and how the data is displayed.

Identify the appropriate tool to access data based on its file format.
Compare the trade-offs associated with computing technologies that affect individual's everyday activities and career options.
Identify the steps in the design process that could be used to solve a problem.
Explain how the development and use of technology influences economic, political, social, and cultural issues.

Compare how technologies have influenced society over time.

Interdisciplinary Connections

LA.W.8.1.A

LA.W.8.1.B

LA.W.8.1.D
LA.W.8.1.E

LA.RI. 8
LA.RI.8.1

Introduce claim(s), acknowledge and distinguish the claim(s) from alternate or opposing claims, and organize the reasons and evidence logically.

Support claim(s) with logical reasoning and relevant evidence, using accurate, credible sources and demonstrating an understanding of the topic or text.

Establish and maintain a formal style.
Provide a concluding statement or section that follows from and supports the argument presented.
Reading Informational Text
Cite the textual evidence and make relevant connections that most strongly supports an
analysis of what the text says explicitly as well as inferences drawn from the text.
LA.RI.8.2 Determine a central idea of a text and analyze its development over the course of the text, including its relationship to supporting ideas; provide an objective summary of the text.

LA.RI.8.4

LA.RI.8.8

LA.SL.8.1.C

LA.SL.8.1.D
Determine the meaning of words and phrases as they are used in a text, including figurative, connotative, and technical meanings; analyze the impact of specific word choices on meaning and tone, including analogies or allusions to other texts.

Delineate and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient; recognize when irrelevant evidence is introduced.

Pose questions that connect the ideas of several speakers and respond to others' questions and comments with relevant evidence, observations, and ideas.

Acknowledge new information expressed by others, and, when warranted, qualify or justify their own views in light of the evidence presented.

Differentiation

- Understand that gifted students, just like all students, come to school to learn and be challenged.
- Pre-assess your students. Find out their areas of strength as well as those areas you may need to address before students move on.
- Consider grouping gifted students together for at least part of the school day.
- Plan for differentiation. Consider pre-assessments, extension activities, and compacting the curriculum.
- Use phrases like "You've shown you don't need more practice" or "You need more practice" instead of words like "qualify" or "eligible" when referring to extension work.
- Encourage high-ability students to take on challenges. Because they're often used to getting good grades, gifted students may be risk averse.
- Definitions of Differentiation Components:
- Content - the specific information that is to be taught in the lesson/unit/course of instruction.
- Process - how the student will acquire the content information.
- Product - how the student will demonstrate understanding of the content.
- Learning Environment - the environment where learning is taking place including physical location and/or student grouping

Differentiation occurring in this unit:

Additional support for stuggling learners will be available.
Challenges will be offered to students requiring additional depth of knowledge.

Modifications \& Accommodations

Refer to QSAC EXCEL SMALL SPED ACCOMMOCATIONS spreadsheet in this discipline.

Modifications and Accommodations used in this unit:

Benchmark Assessments

Benchmark Assessments are given periodically (e.g., at the end of every quarter or as frequently as once per month) throughout a school year to establish baseline achievement data and measure progress toward a standard or set of academic standards and goals.

Schoolwide Benchmark assessments:

Aimsweb benchmarks 3X a year
Linkit Benchmarks 3X a year
Additional Benchmarks used in this unit:

Formative Assessments

Assessment allows both instructor and student to monitor progress towards achieving learning objectives, and can be approached in a variety of ways. Formative assessment refers to tools that identify misconceptions, struggles, and learning gaps along the way and assess how to close those gaps. It includes effective tools for helping to shape learning, and can even bolster students' abilities to take ownership of their learning when they understand that the goal is to improve learning, not apply final marks (Trumbull and Lash, 2013). It can include students assessing themselves, peers, or even the instructor, through writing, quizzes, conversation, and more. In short, formative assessment occurs throughout a class or course, and seeks to improve student achievement of learning objectives through approaches that can support specific student needs (Theal and Franklin, 2010, p. 151).

Formative Assessments used in this unit:

- Kahoot! Games
- Quizizz Games
- Homework
- Q \& A
- Scavenger Hunts
- Coloring Activities
- Task Cards
- Partner Activities

Summative Assessments

Summative assessments evaluate student learning, knowledge, proficiency, or success at the conclusion of an
instructional period, like a unit, course, or program. Summative assessments are almost always formally graded and often heavily weighted (though they do not need to be). Summative assessment can be used to great effect in conjunction and alignment with formative assessment, and instructors can consider a variety of ways to combine these approaches.

Summative assessments for this unit:

- Chapter Tests
- Quizzes

Instructional Materials

1. Big Ideas Math: Algebra 1: A Common Core Curriculum
2. Quizizz
3. Kahoot
4. Scavenger Hunts
5. Task Cards
6. Coloring Activities
7. Resources Book
8. Scientific Calculator
9. Graphing Calculator

Standards

解
${ }^{5}$ 0xMA.8.EE.C. 7 Solve linear equations in one variable.

Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these 0xMA.8.EE.C.7apossibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).
Solve linear equations with rational number coefficients, including
0xMA.8.EE.C.7bequations whose solutions require expanding expressions using the distributive property and collecting like terms

