[bookmark: _gq8qcphoau81]📚 Unit Plan: Coding, Algorithms, and Data in Action
Grade Level: 5th Grade – Library Media
 Timeframe: 6–8 Weeks

[bookmark: _mhyv9jaa6yaw]Standards Addressed
[bookmark: _2eufmjj9b882]Computer Science & Design Thinking (NJSLS 8.1.5)
· 8.1.5.DA.5: Analyze and present data using appropriate visualizations.

· 8.1.5.AP.1: Compare and refine multiple algorithms for the same task.

· 8.1.5.AP.2: Create programs that use clearly named variables.

· 8.1.5.AP.3: Create programs that include sequences, events, loops, and conditionals.

· 8.1.5.AP.4: Break down problems into smaller, manageable steps to design solutions.

· 8.1.5.AP.5: Modify and test solutions to improve programs.

· 8.1.5.AP.6: Use appropriate terms to describe steps taken and choices made during program development.

[bookmark: _dntblvyd8iuj]Career Readiness & Life Literacies (NJSLS 9.1 & 9.4)
· 9.1.5.CR.1: Identify ways to solve problems using resources.

· 9.4.5.CT.3: Describe how to break a problem into smaller parts.

· 9.4.5.DC.1: Explain importance of safe, responsible, and ethical digital behaviors.

· 9.4.5.IML.5: Evaluate the accuracy and usefulness of digital information.

· 9.4.5.TL.3: Use digital tools to explore and create solutions.


[bookmark: _rgsitxkkug3h]Enduring Understandings
· Algorithms can be written in different ways to solve the same problem.

· Coding uses variables, loops, and conditionals to create flexible, efficient programs.

· Breaking down problems into smaller steps helps us solve complex challenges.

· Debugging is a natural part of the design process and leads to improvement.

· Data visualization helps us communicate information clearly and make decisions.

· Collaboration and reflection make our coding stronger and more effective.


[bookmark: _wmx4iv2nnguh]Essential Questions
1. How can we design algorithms to solve problems effectively?

2. Why do programmers use variables, loops, and conditionals?

3. How does breaking problems into steps help us design solutions?

4. What do we do when our program doesn’t work as expected?

5. How can we use data visualizations to share ideas and make decisions?

6. How can I explain my coding choices to others?


[bookmark: _9s5hwyrj8ank]Unit Description
In this 6–8 week unit, students expand their understanding of algorithms, programming, and data. They will compare algorithms, use loops and conditionals, and design programs with variables. They will practice debugging and refining their work, and they will create data visualizations to communicate ideas and support claims. The unit emphasizes computational thinking, creativity, and collaboration, while fostering responsible and reflective use of technology.

[bookmark: _50hbd24pq1yd]Critical Knowledge and Skills
Students will:
· Compare different algorithms for the same problem and refine them.

· Write and test programs using sequences, loops, conditionals, and variables.

· Break down large problems into smaller, manageable tasks.

· Debug and refine programs to improve accuracy.

· Use appropriate coding vocabulary to explain their process.

· Collect, analyze, and present data using charts and graphs.

· Apply problem-solving strategies in collaborative projects.


[bookmark: _wjw83havkkbp]Instructional Strategies
· Read-Alouds/Story Starters: Use How to Code a Sandcastle (Josh Funk) to introduce coding concepts.

· Unplugged Activities: Students create step-by-step “human algorithms” for everyday tasks (e.g., making a sandwich).

· Coding Practice: Use Scratch, Scratch Jr., or Code.org for projects that include loops, conditionals, and variables.

· Debugging Challenges: Teacher provides pre-made “broken” codes for students to fix.

· Data Projects: Students conduct a class survey (favorite apps, library habits), create charts in Google Sheets, and interpret results.

· Collaborative Projects: Groups design a simple game or story in Scratch using variables and conditionals.

· Reflection Journals: Students explain coding choices and debugging steps in their own words.


[bookmark: _u694zwqod9d8]Formative Assessments
· Exit Tickets: “One coding challenge I solved today was…”

· Algorithm Sorting: Compare and choose the most efficient of two algorithms.

· Code Checkpoints: Teacher reviews student Scratch projects for correct use of loops, variables, conditionals.

· Peer Debugging: Students review each other’s work and provide suggestions.

· Data Presentations: Evaluate graphs and charts for accuracy and clarity.

· Vocabulary Check-ins: Students define and apply terms like “variable,” “loop,” “debug.”


[bookmark: _7cqvml7c4dsn]Resources
· Books:

· How to Code a Sandcastle (Josh Funk)

· Secret Coders series (Gene Luen Yang)

· Hello Ruby: Adventures in Coding (Linda Liukas)

· Digital Tools: Scratch, Scratch Jr., Code.org, Google Sheets, Seesaw.

· Websites: Common Sense Media (responsible digital use), PBS Kids Coding, Khan Academy Intro to Coding.

· Hands-On Tools: Algorithm step cards, flowcharts, debugging task sheets.


[bookmark: _r3vf95qkog1q]Interdisciplinary Connections
· Math: Variables, patterns, graphing, problem decomposition.

· ELA: Writing clear steps, explaining processes, reflecting in journals.

· Science: Using data to support predictions and claims.

· Social Studies: Ethical and responsible use of technology in communities.


[bookmark: _2fcbuxeyy4bo]Modifications & Differentiation
· ESL: Use visual supports, coding vocabulary cards with icons, provide sentence frames (“My program works because…”).

· SpEd: Scaffold with step-by-step coding guides, provide tactile manipulatives (arrow cards for sequencing).

· 504 Plans: Provide flexible pacing, reduce coding complexity, allow use of assistive tech.

· Gifted & Talented: Create multi-level Scratch games, integrate advanced concepts (nested loops), or analyze larger data sets.

· Intervention: Small-group reteach, repeat unplugged coding games, focus on single concepts at a time (loops before conditionals).



