
Unit 6: Physical Computing
Content Area: Science
Course(s):
Time Period: MP4
Length: 
Status: Published

NJSLS - Science

CS.9-12.8.1.12.AP.5 Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 

CS.9-12.8.1.12.CS.2 Model interactions between application software, system software, and hardware. 

CS.9-12.8.1.12.CS.3 Compare the functions of application software, system software, and hardware. 

CS.9-12.8.1.12.DA.1 Create interactive data visualizations using software tools to help others better 
understand real world phenomena, including climate change. 

CS.9-12.8.1.12.DA.5 Create data visualizations from large data sets to summarize, communicate, and support 
different interpretations of real-world phenomena. 

CS.9-12.8.1.12.DA.6 Create and refine computational models to better represent the relationships among 
different elements of data collected from a phenomenon or process. 

Rationale and Transfer Goals
Students will be able to demonstrate awareness of simple programming concepts such as sequencing, repton, 
variables, and selection by writing short programs. So far students will have used block-based programming 
and JavaScript in the code.org App Studio. Students will learn how to translate their knowledge of 
programming from those languages to that of Python. Using Python, students will be able to use simple 
control flow statements and variables to use a variety of logical, arithmetic, and comparison operators. These 
will then use the GPiO pins on the Raspberry Pi to make use of LEDs and buttons. Finally, they will end the 
year by programming a Minecra game and building their controllers to play.

Enduring Understandings
• Creave development can be an essential process for creating a computational artifact. 
• People use computer programs to process information to gain insight and knowledge. 
• Algorithms are precise sequences of instructions for processes that can be executed by a computer and 

are implemented using programming languages. 
• Programs can be developed for creative expression, to satisfy personal curiosity, to create new 

knowledge, or to solve problems. 
• People write programs to execute algorithms. 
• Programming uses mathematical and logical concepts.

Essential Questions



• How does software interact with hardware? 
• How can computers communicate information with simple hardware outputs? 
• How can programs be made to repeat tasks? 
• How can computers sense and respond to their environment? 
• How can complex real-world information be represented in code? 
• How can simple hardware be used to develop innovative new products?

Content - What will students know?
• Compare tradeoffs associated with computing technologies that affect people's everyday activities and 

career options. 
• Use flowcharts and/or pseudocode to address complex problems as algorithms. 
• Decompose problems and subproblems into parts to facilitate the design, implementation, and review 

of programs. 
• Incorporate existing code, media, and libraries into original programs, and give a ribbon.
• Systemacally test and refine programs using a range of test cases. 
• Create named variables that represent different data types and perform operations on their values. 
• Document programs to make them easier to follow, test, and debug. 
• Design projects that combine hardware and software components to collect and exchange data. 
• Systematically identify and fix problems with computing devices and their components. 
• Recommend improvements to the design of computing devices, based on an analysis of how users 

interact with the devices. 
• Design and iteratively develop programs that combine control structures, including nested loops and 

compound conditionals. 
• Seek and incorporate feedback from team members and users to refine a solution that meets user needs.

Skills - What will students be able to do?
• Idenfy computing innovations within a given field 
• For a given device, articulate the likely inputs and outputs 
• Suggest improvements to help a device beer solve a specific problem 
• Compare and contrast multiple ways to take input 
• Describe the elements of an event handler 
• Model different methods of taking user input 
• Create a user interface composed of multiple design elements
• Use event handlers to respond to user input 
• Explain the difference between the "click", "change", and "input" events, and identify scenarios for 

each 
• Use a geer to get the current content of a UI element 
• Use a seer to change the content or properties of a UI element 
• Write programs that change multiple elements on a single screen instead of changing screens 
• Connect and troubleshoot external devices 
• Turn on and off an LED with code 



• Access a specific location in a list using its index 
• Arculate the difference between the length of a list and the index of its last value 
• Access items in an array by index 
• Apply the RGB color model to LEDs
• Understand how to use a for loop as a way to repeat a set of code a certain number of times 
• Trace the execution of a for-loop 
• Given a for loop, predict how many times it will repeat 
• Use for loops to process through the color Leds and do something to all the color LEDs 
• Use for loops to process a list 
• Use a med loop to write a non-blocking infinite loop 
• Replicated a for loop with a med loop 
• Use event handlers to take user input 
• Output simple information on a physical device 
• Use a loop to repeat instructions 
• Prototype a program that integrates software and hardware 
• Aach an event handler to a hardware input
• ● Choose the appropriate event for a given scenario 
• Aach an event handler to a hardware input 
• Choose the appropriate event for a given scenario 
• Develop apps that take input through analog sensors 
• Independently scope the features of a piece of software 
• Prototype a physical computing device 
• Implement a plan for developing a piece of software that integrates hardware inputs and outputs

 

Activities - How will we teach the content and skills?
• App Lab 
• Maker Toolkit 
• Project 
• Python Programming 
• Raspberry Pi 
• Minecraft 
• Breadboards with LEDs and Buttons 
• Unplugged 
• Research

Evidence/Assessments - How will we know what students have learned?
• Rubrics for projects from code.org 
• Students will be able to control an LED turning on and off. Students will be able to use a button to 

perform an event in Minecraft. 



• Students will be able to create a controller using user-made buttons to make a character turn le, right, 
forward, and backward in Minecraft. 

• Students will know the parts of a Raspberry Pi and be able to connect a breadboard to it

Spiraling for Mastery
Content or Skill for this Unit Spiral Focus from Previous Unit Instructional Activity

• People evaluate and select 
algorithms based on 
performance, reusability, 
and ease of 
implementation. 
Knowledge of common 
algorithms improves how 
people develop software, 
secure data, and store 
information.

• Data structures are used to 
manage program 
complexity. Programmers 
choose data structures 
based on functionality, 
storage, and performance 
tradeoffs.

• Data structures are used to 
manage program 
complexity. Programmers 
choose data structures 
based on functionality, 
storage, and performance 
tradeoffs. 

• Programmers consider 
tradeoffs related to 
implementation, 
readability, and program 
performance when 
selecting and combining 
control structures. 

• Complex programs are 
designed as systems of 
interacting modules, each 
with a specific role, 
coordinating for a common 
overall purpose. These 
modules can be procedures 
within a program; 
combinations of data and 

• Algorithms affect how 
people interact with 
computers and the way 
computers respond. People 
design algorithms that are 
generalizable to many 
situations. Readable 
algorithms are easier to 
follow, test, and debug. 

• Programmers create 
variables to store data 
values of selected types. A 
meaningful identity is 
assigned to each variable to 
access and perform 
operations on the value by 
name. Variables enable the 
flexibility to represent 
different situations, process 
different sets of data, and 
produce varying outputs. 

• Programmers select and 
combine control structures, 
such as loops, event 
handlers, and conditionals, 
to create more complex 
program behavior. 

• Programs use procedures to 
organize code, hide 
implementation details, and 
make code easier to reuse. 
Procedures can be 
repurposed in new 
programs. Defining 
parameters for procedures 
can generalize behavior 
and increase reusability.

• People design meaningful 
soluons for others by 
defining a problem’s 

• Learning to Program with 
Python

• Physical Computing with 
Python 

• Input and Output Controls 
• Minecraft
• Build a Controller for 

Minecraft



procedures; or 
independent, but 
interrelated, programs. 
Modules allow for beer 
management of complex 
tasks. 

• Diverse teams can develop 
programs with a broad 
impact through careful 
review and by drawing on 
the strengths of members 
in different roles. Design 
decisions often involve 
tradeoffs. The development 
of complex programs is 
aided by resources such as 
libraries and tools to edit 
and manage parts of the 
program. Systematic 
analysis is critical for 
identifying the effects of 
lingering bugs

criteria and constraints, 
carefully considering the 
diverse needs and wants of 
the community, and testing 
whether criteria and 
constraints were met.

Key Resources
• Raspberry Pi Curriculum 
• Raspberry Pi Resources 
• Minecraft with Raspberry Pi and Python 
• Learning Python
• Skulpt Python in a Browser
• Unit 6- Code.org Computer Discoveries Curriculum

Career Readiness, Life Literacies, & Key Skills

CAEP.9.2.12.C.7 Examine the professional, legal, and ethical responsibilities for both employers and 
employees in the global workplace. 

TECH.9.4.12.CI Creativity and Innovation 

TECH.9.4.12.CT.2 Explain the potential benefits of collaborating to enhance critical thinking and problem 
solving (e.g., 1.3E.12profCR3.a). 

Collaboration with individuals with diverse experiences can aid in the problem-solving 
process, particularly for global issues where diverse solutions are needed. 

https://curriculum.raspberrypi.org/
https://www.raspberrypi.org/resources/
https://www.raspberrypi.org/learning/getting-started-with-minecraft-pi/
https://www.learnpython.org/
http://www.skulpt.org/
https://curriculum.code.org/csd/unit6/



