
Unit 3: Intro to programming
Content Area: Science
Course(s):
Time Period: MP2
Length: 25 days
Status: Published

NJSLS - Science

CS.9-12.8.1.12.AP.1 Design algorithms to solve computational problems using a combination of original and
existing algorithms.

CS.9-12.8.1.12.AP.2 Create generalized computational solutions using collections instead of repeatedly using
simple variables.

CS.9-12.8.1.12.AP.5 Decompose problems into smaller components through systematic analysis, using
constructs such as procedures, modules, and/or objects.

CS.9-12.8.1.12.AP.6 Create artifacts by using procedures within a program, combinations of data and
procedures, or independent but interrelated programs.

CS.9-12.8.1.12.CS.2 Model interactions between application software, system software, and hardware.

CS.9-12.8.1.12.CS.3 Compare the functions of application software, system software, and hardware.

CS.9-12.8.1.12.CS.4 Develop guidelines that convey systematic troubleshooting strategies that others can use
to identify and fix errors.

CS.9-12.8.1.12.DA.1 Create interactive data visualizations using software tools to help others better
understand real world phenomena, including climate change.

CS.9-12.8.1.12.DA.5 Create data visualizations from large data sets to summarize, communicate, and support
different interpretations of real-world phenomena.

CS.9-12.8.1.12.DA.6 Create and refine computational models to better represent the relationships among
different elements of data collected from a phenomenon or process.

CS.9-12.8.1.12.IC.1 Evaluate the ways computing impacts personal, ethical, social, economic, and cultural
practices.

CS.9-12.8.1.12.IC.3 Predict the potential impacts and implications of emerging technologies on larger social,
economic, and political structures, using evidence from credible sources.

Rationale and Transfer Goals
This unit introduces students to programming in the JavaScript language and creating small applications
(apps) that live on the web. This introduction places a heavy emphasis on understanding the general principles
of computer programming and revealing those things that are universally applicable to any programming
language.

Enduring Understandings
• Creave development can be an essential process for creating computational artifacts.
• Computing enables people to use creative development processes to create computational artifacts for

creative expression or to solve a problem.
• Multiple levels of abstraction are used to write programs or create other computational artifacts

• Algorithms are precise sequences of instructions for processes that can be executed by a computer and
are implemented using programming languages.

• Programs can be developed for creative expression, to satisfy personal curiosity, to create new
knowledge, or to solve problems (to help people, organizations, or society).

• People write programs to execute algorithms.
• Programming is facilitated by appropriate abstractions.

Essential Questions
• Why do we need algorithms?
• How is designing an algorithm to solve a problem different from other kinds of problem-solving?
• How do you design a solution for a problem so that is programmable?
• What does it mean to be a "creative" programmer?
• How do programmers collaborate?

Content - What will students know?
• Algorithms are precise sequences of instructions for processes that can be executed by a computer and

are implemented using programming languages.
• People write programs to execute algorithms.
• Algorithms can solve many but not all computational problems.
• Multiple levels of abstraction are used to write programs or create other computational artifacts
• Programs can be developed for creative expression, to satisfy personal curiosity, to create new

knowledge, or to solve problems (to help people, organizations, or society).
• Programming is facilitated by appropriate abstractions

Skills - What will students be able to do?
• Assess the clarity of a set of instructions expressed in human language.
• Create a set of instructions in human language for building a simple LEGO block arrangement.
• Identify connections between the ability to program and the ability to solve problems.
• Describe the ambiguities inherent in human language and the ways programming languages seek to

remove those ambiguities.
• Trace programs are written in the "Human Machine Language"
• Develop an algorithm to find the smallest playing card in a row of cards.
• Express an algorithm in the "Human Machine Language"
• Identify the properties of sequencing, selection, and iteration of the "Human Machine Language"
• Evaluate the correctness of algorithms expressed in the "Human Machine Language"
• Develop an algorithm to solve a new problem with playing cards
• Express an algorithm in the Human Machine Language

• Identify Sequencing, selection, and iteration in a program written in the Human Machine language
• Describe the properties of the Human Machine Language that make it a "low-level" language
• Solve simple programming challenges when the set of allowed commands is constrained.
• Explain the considerations that go into the “efficiency” of a program.
• Use App Lab to write programs that create simple drawings with “turtle graphics.”
• Work with a partner to program a turtle task that requires about 50 lines of code.
• Jusfy or explain choices made when programming a solution to a turtle task.
• Recognize functions in programs as a form of abstraction.
• Write a program that solves a turtle drawing problem using multiple levels of abstraction (i.e. functions

that call other functions within your code)
• Explain why and how functions can make coding easier to read and maintain.
• Define and call simple functions that solve turtle drawing tasks.
• Write a complete program with functions that solve subtasks of a larger programming task.
• Explain how functions are an example of abstraction.
• Use a “top-down” problem-solving approach to identify sub-tasks of a larger programming task.
• Use parameters to provide different values as input to procedures when they are called in a program.
• Use API documentation to assist in writing programs.
• Define an API as the set of commands made available by a programming language.
• Write functions with parameters to generalize a solution instead of duplicating code.
• Identify appropriate situations for creating a function with parameters.
• Use random numbers as inputs to function calls for testing.
• Add parameters to a function in an existing piece of code to generalize its behavior.
• Use a loop in a program to simplify the expression of repeated tasks.
• Identify appropriate situations in a program for using a loop.
• Use random values within a loop to repeat code that behaves differently each me it is executed.
• Write programs that address one component of a larger programming problem and integrate with other

similarly designed programs.
• Collaborate to break down a complex programming problem into its parts
• Use code written by other programmers to complete a larger programming task.

Activities - How will we teach the content and skills?
• Concept Innovation
• Unplugged
• Algorithms
• Turtle Programming

Evidence/Assessments - How will we know what students have learned?
• Consider the algorithm you designed for today’s acvity. Identify two instances where there may be

multiple ways to interpret your instructions and suggest improvements that could be made to improve
their clarity.

• Describe the features of a programming language that make it different from the language you are used

to using in everyday life. Explain why a programming language must be created in this way.
• Write a Human Machine language program that: Repeatedly shifts the left hand to the right until it

finds a 5 or 6. The program should stop when the left hand is at (or past) the end of the list, or it finds a
5, or it finds a 6.

• This lesson introduced the noon of "efficiency" in programming, and that it might mean different
things at different times. Think of an example outside of computer science in which you have heard the
term "efficiency" and compare it to the ways we talked about efficiency in programming. In what ways
is the meaning of "efficiency" the same? In what ways is it different?

• Today we solved a series of problems with a limited set of commands (only 4). Give at least one
reason why it's useful to learn how to solve, and program solutions to problems with a limited set of
commands

• In your own words explain at least one reason why programming languages have functions.
• In the Create Performance Task you will be asked to identify an abstraction in your program and

explain how it helps manage the complexity of the program. Functions are a form of abstraction. Pick a
function you wrote in your solution to the 3x3 square problem and explain how it helps manage the
complexity of your program.

• It is said that functions with parameters generalize the behavior of a more specific command. Explain
what this sentence means to you using the difference between turn left and turn left (angle).

• "Abstraction" is often used to indicate cases where we focus on a general case and ignore a specific
instance of a problem. Given this meaning of the word, how are functions with parameters an example
of abstraction?

• When breaking a problem down, you often encounter elements that you want to use repeatedly in your
code. Sometimes it's appropriate to write a new function; at other times it's appropriate to write a loop.
There is no hard-and-fast rule as to which is better, but what do you think? What kinds of
circumstances would lead you to write a function using a loop?

Spiraling for Mastery
Content or Skill for this Unit Spiral Focus from Previous Unit Instructional Activity

• People evaluate and select
algorithms based on
performance, reusability,
and ease of
implementation.
Knowledge of common
algorithms improves how
people develop software,
secure data, and store
information.

• Data structures are used to
manage program
complexity. Programmers
choose data structures
based on functionality,
storage, and performance
tradeoffs.

• Algorithms affect how
people interact with
computers and the way
computers respond. People
design algorithms that are
generalizable to many
situations. Readable
algorithms are easier to
follow, test, and debug.

• Programmers create
variables to store data
values of selected types. A
meaningful identity is
assigned to each variable to
access and perform
operations on the value by
name. Variables enable the
flexibility to represent

• The Need for Programming
Languages

• Creativity in Algorithms
• APIs and Using Functions

with Parameters

• Data can be composed of
multiple data elements that
relate to one another. For
example, population data
may contain information
about age, gender, and
height. People make
choices about how data
elements are organized and
where data is stored. These
choices affect cost, speed,
reliability, accessibility,
privacy, and integrity.

different situations, process
different sets of data, and
produce varying outputs.

• Applications store data as a
representation
Representations occur at
multiple levels, from the
arrangement of information
into organized formats
(such as tables in Soware)
to the physical storage of
bits. The software tools
used to access information
translate the low-level
representation of bits into a
form understandable by
people.

Key Resources
Unit 3 - Code.org Computer Science Principles Curriculum

Turtle Programming

Under the Sea Challenge

Career Readiness, Life Literacies, & Key Skills

CAEP.9.2.12.C.7 Examine the professional, legal, and ethical responsibilities for both employers and
employees in the global workplace.

TECH.9.4.12.CI Creativity and Innovation

TECH.9.4.12.CT.2 Explain the potential benefits of collaborating to enhance critical thinking and problem
solving (e.g., 1.3E.12profCR3.a).

Collaboration with individuals with diverse experiences can aid in the problem-solving
process, particularly for global issues where diverse solutions are needed.

https://curriculum.code.org/csp/unit3/
https://studio.code.org/s/csp3/stage/4/puzzle/5
https://studio.code.org/s/csp3/stage/9/puzzle/14

