
 Unit 3: Intro to Programming
 December-January

 Targeted Standards : K12 Computer Science Standards

 ● Compu�ng Systems - Devices, Hardware and So�ware, Troubleshoo�ng
 ● Data and Analysis - Collec�on, Visualiza�on and Transforma�on, Inference and Models
 ● Algorithms and Programming - Algorithms, Variables, Control, Modularity, Program Development
 ● Impacts of Compu�ng - Culture, Social Interac�ons, Safety, Law, and Ethics

 (also reference CSTA K-12 Computer Science Standards)

 Ra�onale and Transfer Goals : This unit introduces students to programming in the JavaScript language and crea�ng small applica�ons (apps)
 that live on the web. This introduc�on places a heavy emphasis on understanding general principles of computer programming and revealing
 those things that are universally applicable to any programming language.

 Enduring Understandings:
 ● Crea�ve development can be an essen�al process for crea�ng computa�onal ar�facts.
 ● Compu�ng enables people to use crea�ve development processes to create computa�onal ar�facts for crea�ve expression or to solve a

 problem.
 ● Mul�ple levels of abstrac�on are used to write programs or create other computa�onal ar�facts
 ● Algorithms are precise sequences of instruc�ons for processes that can be executed by a computer and are implemented using

 programming languages.
 ● Programs can be developed for crea�ve expression, to sa�sfy personal curiosity, to create new knowledge, or to solve problems (to help

 people, organiza�ons, or society).
 ● People write programs to execute algorithms.
 ● Programming is facilitated by appropriate abstrac�ons.

https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://k12cs.org/framework-statements-by-progression/
https://curriculum.code.org/csp/standards/
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form

 Essen�al Ques�ons :
 ● Why do we need algorithms?
 ● How is designing an algorithm to solve a problem different from other kinds of problem solving?
 ● How do you design a solu�on for a problem so that is programmable?
 ● What does it mean to be a "crea�ve" programmer?
 ● How do programmers collaborate?

 Content/Objec�ves Instruc�onal Ac�ons
 Content

 What students will know
 Skills

 What students will be able to do
 Ac�vi�es/Strategies

 How we teach content and skills
 Evidence (Assessments)

 How we know students have learned
 ● Algorithms are precise

 sequences of instruc�ons
 for processes that can be
 executed by a computer
 and are implemented
 using programming
 languages.

 ● People write programs to
 execute algorithms.

 ● Algorithms can solve
 many but not all
 computa�onal problems.

 ● Mul�ple levels of
 abstrac�on are used to
 write programs or create
 other computa�onal
 ar�facts

 ● Programs can be
 developed for crea�ve
 expression, to sa�sfy

 ● Assess the clarity of a set
 of instruc�ons expressed
 in human language.

 ● Create a set of
 instruc�ons in human
 language for building a
 simple LEGO block
 arrangement.

 ● Iden�fy connec�ons
 between the ability to
 program and the ability
 to solve problems.

 ● Describe the ambigui�es
 inherent in human
 language and the ways
 programming languages
 seek to remove those
 ambigui�es.

 ● Concept Innova�on
 ● Unplugged
 ● Algorithms
 ● Turtle Programming

 ● Consider the algorithm
 you designed for today’s
 ac�vity. Iden�fy two
 instances where there
 may be mul�ple ways to
 interpret your
 instruc�ons and suggest
 improvements that could
 be made to improve their
 clarity.

 ● Describe the features of a
 programming language
 that make it different
 from the language you
 are used to using in
 everyday life. Explain why
 a programming language
 must be created in this
 way.

https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form

 personal curiosity, to
 create new knowledge, or
 to solve problems (to help
 people, organiza�ons, or
 society).

 ● Programming is facilitated
 by appropriate
 abstrac�ons.

 ● Trace programs wri�en in
 the "Human Machine
 Language"

 ● Develop an algorithm to
 find the smallest playing
 card in a row of cards

 ● Express an algorithm in
 the "Human Machine
 Language"

 ● Iden�fy the proper�es of
 sequencing, selec�on and
 itera�on the "Human
 Machine Language"

 ● Evaluate the correctness
 of algorithms expressed
 in the "Human Machine
 Language"

 ● Develop an algorithm to
 solve a new problem with
 playing cards

 ● Express an algorithm in
 the Human Machine
 Language

 ● Iden�fy Sequencing,
 Selec�on and Itera�on in
 a program wri�en the
 Human Machine
 Language

 ● Describe the proper�es
 of the Human Machine
 Language that make it a
 "low level" language.

 ● Write a human machine
 language program that:
 Repeatedly shi�s the le�
 hand to the right un�l it
 finds a 5 or 6 The
 program should stop
 when the le� hand is at
 (or past) the end of the
 list, or it finds a 5, or it
 finds a 6.

 ● This lesson introduced
 the no�on of "efficiency"
 in programming, and that
 it might mean different
 things at different �mes.
 Think of an example
 outside of computer
 science in which you have
 heard the term
 "efficiency" and compare
 it to the ways we talked
 about efficiency in
 programming. In what
 ways is the meaning of
 "efficiency" the same? In
 what ways is it different?

 ● Today we solved a series
 of problems with a
 limited set of commands
 (only 4). Give at least one
 reason why it's useful to
 learn how to solve, and

https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form

 ● Solve simple
 programming challenges
 when the set of allowed
 commands is constrained.

 ● Explain considera�ons
 that go into “efficiency”
 of a program.

 ● Use App Lab to write
 programs that create
 simple drawings with
 “turtle graphics.”

 ● Work with a partner to
 program a turtle task that
 requires about 50 lines of
 code.

 ● Jus�fy or explain choices
 made when programming
 a solu�on to a turtle task.

 ● Recognize func�ons in
 programs as a form of
 abstrac�on.

 ● Write a program that
 solves a turtle drawing
 problem using mul�ple
 levels of abstrac�on (i.e.
 func�ons that call other
 func�ons within your
 code).

 ● Explain why and how
 func�ons can make code
 easier to read and
 maintain.

 program solu�ons to
 problems with a limited
 set of commands.

 ● In your own words
 explain at least one
 reason why programming
 languages have func�ons.

 ● In the Create
 Performance Task you will
 be asked to iden�fy an
 abstrac�on in your
 program and explain how
 it helps manage the
 complexity of the
 program. Func�ons are a
 form of abstrac�on. Pick a
 func�on you wrote in
 your solu�on to the 3x3
 square problem and
 explain how it helps
 manage the complexity of
 your program.

 ● It is said that func�ons
 with parameters
 generalize the behavior of
 a more specific
 command. Explain what
 this sentence means to
 you using the difference
 between turnLe�() and
 turnLe�(angle).

https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form

 ● Define and call simple
 func�ons that solve turtle
 drawing tasks.

 ● Write a complete
 program with func�ons
 that solve sub-tasks of a
 larger programming task.

 ● Explain how func�ons are
 an example of
 abstrac�on.

 ● Use a “top-down”
 problem-solving
 approach to iden�fy
 sub-tasks of a larger
 programming task.

 ● Use parameters to
 provide different values
 as input to procedures
 when they are called in a
 program.

 ● Use API documenta�on
 to assist in wri�ng
 programs.

 ● Define an API as the set
 of commands made
 available by a
 programming language.

 ● Write func�ons with
 parameters to generalize
 a solu�on instead of
 duplica�ng code.

 ● “Abstrac�on” is o�en
 used to indicate cases
 where we focus on a
 general case and ignore a
 specific instance of a
 problem. Given this
 meaning of the word,
 how are func�ons with
 parameters an example of
 abstrac�on?

 ● When breaking a problem
 down, you o�en
 encounter elements that
 you want to use
 repeatedly in your code.
 Some�mes it's
 appropriate to write a
 new func�on; at other
 �mes it's appropriate to
 write a loop. There is no
 hard-and-fast rule as to
 which is be�er, but what
 do you think? What kinds
 of circumstances would
 lead you to wri�ng a
 func�on versus using a
 loop?

https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form

 ● Iden�fy appropriate
 situa�ons for crea�ng a
 func�on with parameters.

 ● Use random numbers as
 inputs to func�on calls
 for the purpose of
 tes�ng.

 ● Add parameters to a
 func�on in an exis�ng
 piece of code to
 generalize its behavior.

 ● Use a loop in a program
 to simplify the expression
 of repeated tasks.

 ● Iden�fy appropriate
 situa�ons in a program
 for using a loop.

 ● Use random values within
 a loop to repeat code that
 behaves differently each
 �me it is executed.

 ● Write programs that
 address one component
 of a larger programming
 problem and integrate
 with other similarly
 designed programs.

 ● Collaborate to break
 down a complex
 programming problem
 into its component parts.

https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form

 ● Use code wri�en by other
 programmers to
 complete a larger
 programming task.

 Spiraling for Mastery
 Where does this unit spiral back to other units from this or previous years
 in order to ensure that students retain mastery of what they’ve learned?

 Content or Skill for this Unit Spiral Focus from Previous Unit Instruc�onal Ac�vity
 ● People evaluate and select algorithms

 based on performance, reusability,
 and ease of implementa�on.
 Knowledge of common algorithms
 improves how people develop
 so�ware, secure data, and store
 informa�on.

 ● Data structures are used to manage
 program complexity. Programmers
 choose data structures based on
 func�onality, storage, and
 performance tradeoffs.

 ● Algorithms affect how people
 interact with computers and
 the way computers respond.
 People design algorithms that
 are generalizable to many
 situa�ons. Algorithms that
 are readable are easier to
 follow, test, and debug.

 ● Programmers create variables
 to store data values of
 selected types. A meaningful
 iden�fier is assigned to each
 variable to access and
 perform opera�ons on the
 value by name. Variables
 enable the flexibility to
 represent different situa�ons,
 process different sets of data,
 and produce varying outputs.

 ● Applica�ons store data as a
 representa�on.

 ● The Need for Programming Languages

 ● Crea�vity in Algorithms

https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form

 ● Data can be composed of mul�ple
 data elements that relate to one
 another. For example, popula�on
 data may contain informa�on about
 age, gender, and height. People make
 choices about how data elements are
 organized and where data is stored.
 These choices affect cost, speed,
 reliability, accessibility, privacy, and
 integrity.

 Representa�ons occur at
 mul�ple levels, from the
 arrangement of informa�on
 into organized formats (such
 as tables in so�ware) to the
 physical storage of bits. The
 so�ware tools used to access
 informa�on translate the
 low-level representa�on of
 bits into a form
 understandable by people.

 ● APIs and Using Func�ons with Parameters

 21 st Century Skills: What are the 21 st Century Skills that are a part of this unit, and where are they experienced?
 ● Global awareness
 ● Crea�vity and Innova�on
 ● Cri�cal Thinking and Problem Solving
 ● Communica�on and Collabora�on
 ● Informa�on Literacy
 ● Flexibility and Adaptability
 ● Ini�a�ve and Self Direc�on

 These skills are experienced throughout unplugged and plugged ac�vi�es that will involve individual, group, and whole class discussion.
 Key resources: What are the resources that are essen�al for this unit (may also be listed in “Ac�vi�es/Strategies”)?

 ● Unit 3 - Code.org Computer Science Principles Curriculum
 ● Turtle Programming
 ● Under the Sea Challenge

https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
http://www.p21.org/about-us/p21-framework
https://curriculum.code.org/csp/unit3/
https://studio.code.org/s/csp3/stage/4/puzzle/5
https://studio.code.org/s/csp3/stage/9/puzzle/14
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form
https://docs.google.com/forms/d/1SW2D1aDmhBKEISuIBYrSwhGonjUki5g62NgzXqndB6A/viewform?usp=send_form

