

Unit 2: Digital Information October-November

Targeted Standards: K12 Computer Science Standards

- Computing Systems Devices, Troubleshooting
- Networks and the Internet Network Communication and Organization
- Data and Analysis Collection, Storage, Visualization and Transformation, Inference and Models
- Impacts of Computing Culture, Social Interactions, Safety, Law, and Ethics

(also reference CSTA K-12 Computer Science Standards)

Rationale and Transfer Goals:

This unit further explores the ways that digital information is encoded, represented and manipulated. In this unit students will use a variety of tools including Code.org widgets and external data manipulation and visualization tools (such as Excel or Google Sheets).

Enduring Understandings:

- Creative development can be an essential process for creating computational artifacts.
- Computing can extend traditional forms of human expression and experience.
- A variety of abstractions built upon binary sequences can be used to represent all digital data.
- There are trade offs when representing information as digital data.
- Computing can extend traditional forms of human expression and experience.
- People use computer programs to process information to gain insight and knowledge.
- Computing facilitates exploration and the discovery of connections in information.
- There are trade offs when representing information as digital data.
- Computing enhances communication, interaction, and cognition.
- Computing has a global affect -- both beneficial and harmful -- on people and society.

Essential Questions:

- Are the ways in which digital information is encoded more laws of nature or man made?
- What kinds of limitations does the binary encoding of information impose on what can be represented inside a computer?
- How accurately can human experience and perception be captured or reflected in digital information?
- What is the relationship between data, information and knowledge?
- What are the best ways to find, see, and extract meaningful trends and patterns from raw data?
- Where and how does human bias affect the collection, processing and interpretation of data?

Content/Objectives		Instructional Actions	
Content	Skills	Activities/Strategies	Evidence (Assessments)
What students will know	What students will be able to do	How we teach content and skills	How we know students have learned
 What students will know A variety of abstractions built upon binary sequences can be used to represent all digital data. There are trade offs when representing information as digital data. Multiple levels of abstraction are used to write programs or create other computational artifacts People use computer programs to process information to gain insight and knowledge. 	 What students will be able to do Use appropriate terminology when describing the size of digital files. Identify and compare the size of familiar digital media. Solve small word problems that require reasoning about file sizes. Collaborate with a peer to find a solution to a text compression problem using the Text Compression Widget (lossless compression 		
 Algorithms can solve many but not all computational problems. 	 Explain why the optimal amount of compression is 	 Individual Skill Building Tutorial Collaborative Artifact Creation 	 What would happen if we didn't include width and height bits in our protocol? Assume your

- Creative development can be an essential process for creating computational artifacts.
- Computing enables people to use creative development processes to create computational artifacts for creative expression or to solve a problem.
- Computing can extend traditional forms of human expression and experience.
- Models and simulations use abstraction to generate new understanding and knowledge.
- Computing facilitates exploration and the discovery of connections in information.
- Computing has a global affect -- both beneficial and harmful -- on people and society.
- Computing innovations influence and are influenced by the economic, social, and

impossible or "hard" to identify.

- Explain some factors that make compression challenging.
- Develop a strategy (heuristic algorithm) for compressing text.
- Describe the purpose and rationale for lossless compression.
- Explain how images are encoded with pixel data.
- Describe a pixel as an element of a digital image.
- Encode a B&W image in binary representing both the pixel data (intensity) and metadata (width, height).
- Create the necessary metadata to represent the width and height of a digital image, using a computational tool.
- Explain why image width and height are metadata for a digital image.
- Use the Pixelation Tool to encode small color

- Writing
- Analyzing
- Group Skill Building
- Artifact Creation
- Performance Task

friend just sent you 32 bits of pixel data (just the Os and 1s for black and white pixels). Could you recover the original image? If so, how?

- How many bits (or bytes) are required to encode an image that is 25 pixels wide and 50 pixels tall, if you encode it with 24 bits per pixel?
- Imagine that you have an image that is too dark or too bright. Describe how you would alter the RGB settings to brighten or darken it. Give an example.
- Consider the following statement from the CS Principles course framework: 7.4.1C The global distribution of computing resources raises issues of equity, access, and power. Briefly describe one of these issues that you learned about in the lesson and how it affects your life or the lives of people you

cultural contexts in which	images with varying	know. Keep your response
they are designed and	bits-per-pixel settings.	to about 100 words
used.	Explain the color	(about 3-5 sentences).
 Computing enhances 	encoding scheme for	 Show students a
communication,	digital images.	visualization and have
interaction, and	 Use the Pixelation Tool to 	them analyze it, using the
cognition.	encode an image of the	table of characteristics of
	student's design.	good/bad visualizations
	 Explain the benefits of 	to justify their opinion.
	using hexadecimal	 Describe the
	numbers for representing	development process of
	long streams of bits.	discovering your data
	• Explain the difference	story and creating a
	between lossy and	visualization. Describe the
	lossless compression.	difficulties and/or
	Identify common	opportunities you
	computer file types and	encountered along the
	whether they are	way, and describe the
	compressed or not, and	collaborative process
	whether compression is	between you and your
	lossy or lossless.	partner.
	Read a technical article	
	on the web and sift its	
	contents for targeted	
	information.	
	Break a complex piece of	
	information down into its	
	component parts such	
	that it could be	
	represented on a	
	computer.	

 Choose appropriate binary encodings for specific pieces of information and justify those choices. Develop a hypothesis about student behavior
specific pieces of information and justify those choices. • Develop a hypothesis about student behavior
 information and justify those choices. Develop a hypothesis about student behavior
 information and justify those choices. Develop a hypothesis about student behavior
 those choices. Develop a hypothesis about student behavior
 Develop a hypothesis about student behavior
about student behavior
over time, based on a
small sample of data.
 Describe sources of data
appropriate for
performing
computations.
Use Google Trends to
identify and explore
connections and patterns
within a data
visualization.
Accurately describe what
a data visualization of a
trend is showing.
Provide plausible
explanations of trends
and patterns observed
within a data
visualization.
Define the digital divide
as the variation in access
or use of technology by
various demographic
characteristics.

		1 7
ma col	entify assumptions ade when drawing nclusions from data d data visualizations	
• Ide	entify an effective data	
	ualization and give tification.	
• Co	llaborate to investigate	
	d evaluate a data ualization.	
• Su	ggest an appropriate	
vis da	ualization for some ta.	
• Eva	aluate a data	
	ualization for ectiveness of	
	mmunication.	
	entify a poor data ualization and give	
	tification.	
	lect the appropriate	
	be of data visualization discover trends and	
	tterns within a dataset.	
	eate a bar, line, and atter chart from a	
da	taset using a	
	mputational tool. e the settings of a data	
	ualization tool to	
ma	anipulate and refine the	

		[
	features of a data		
	visualization.		
	investigate a dataset.		
	Create a visualization		
	(chart) from provided		
	data.		
	Identify possible trends		
	or connections in a data		
	set by creating		
	visualizations of it.		
•	Accurately communicate		
	about a visualization of		
	their own creation.		
	Filter and sort a dataset		
	using a spreadsheet tool.		
	Identify and correct		
	invalid values in a dataset		
	with the aid of		
	computational tools		
	Justify the need to clean		
	data prior to analyzing it		
	with computational tools.		
	at least one aggregation		
	and one calculation when		
	given a set of data.		
	Describe the benefits a		
	summary table has over a		
	raw dataset.		

	• Collaboratively investigate a dataset by			
	 creating summary tables. Explain the meaning of a summary table they created. 			
	 Create summaries of a dataset using a pivot table. 			
	 Manipulate and clean data in order to prepare it for analysis. 			
	Explain the process used to create a visualization.Design a visualization that			
	clearly presents a trend, pattern, or relationship within a dataset.			
	 Create visualizations of a dataset in order to discover trends and 			
	 patterns. Draw conclusions from the contents of a data visualization. 			
		r Mastery		
<u>Spiraling for Mastery</u> Where does this unit spiral back to other units from this or previous years in order to ensure that students retain mastery of what they've learned?				
Content or Skill for this Un				ctional Activity

 Computing devices are often integrated with other systems, including biological, mechanical, and social systems. These devices can share data with one another. The usability, dependability, security, and accessibility of these devices, and the systems they are integrated with, are important considerations in their 	 The interaction between humans and computing devices presents advantages, disadvantages, and unintended consequences. The study of human-computer interaction can improve the design of devices and extend the 	 Encoding B&W Images
design as they evolve.	abilities of humans.	
 Troubleshooting complex problems involves the use of multiple sources when researching, evaluating, and implementing potential solutions. Troubleshooting also relies on experience, such as when people recognize that a problem is similar to one they have seen before or adapt solutions that have worked in the past. 	 Comprehensive troubleshooting requires knowledge of how computing devices and components work and interact. A systematic process will identify the source of a problem, whether within a device or in a larger system of connected devices. 	Lossy Compression and File Formats

<u>21</u>st <u>Century Skills</u>: What are the <u>21st Century Skills</u> that are a part of this unit, and where are they experienced?

- Global awareness
- Creativity and Innovation
- Critical Thinking and Problem Solving
- Communication and Collaboration
- Information Literacy
- Flexibility and Adaptability
- Initiative and Self Direction

These skills are experienced throughout unplugged and plugged activities that will involve individual, group, and whole class discussion.

Key resources: What are the resources that are essential for this unit (may also be listed in "Activities/Strategies")?

- Unit 2 Code.org Computer Science Principles Curriculum
- <u>Widget Text Compression</u>
- Widget Color Pixelation