

Pre-Calculus Unit 4 Introduction to Discrete and Continuous Mathematics April-June (45 instructional days)

Targeted Standards

Cluster: Apply the probability properties to solve various	S-CP.A1 : Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and,"
problems. Understand the concepts of limits and how they are used in solving higher-level	"not"). S-CP.A2: Understand that two events A and B are independent if the probability of A and B occurring
problems. Analyze sequences and sums.	together is the product of their probabilities, and use this characterization to determine if they are independent.
	S-CP.A3 : Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the
	S-MD.A1 : (+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
	S-MD.A2 : (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
	S-MD.A3 : (+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the
	theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade
	S-MD.A4 : (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?
	S-MD.B6 : (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number
	S-CP.B9 : (+) Use permutations and combinations to compute probabilities of compound events and solve problems.

F-IF.A3 : Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(a, b) = f(a, b)$ for $a > 1$.
$f(n+1) = f(n) + f(n-1)$ for $n \ge 1$. F-IF.B6 : Calculate and interpret the average rate of change of a function (presented symbolically or as a
table) over a specified interval. Estimate the rate of change from a graph. \star
F-LE.A2 : Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a
table).

Rationale and Transfer Goals:

This unit introduces students to discrete and continuous variables through examination of probability. Students continue building on Algebra II knowledge and review key areas of that course. Students begin to understand how to apply knowledge and skills in algebra, specifically involving exponents into the calculus-based application of logarithms. This bridge helps transition students to Calculus.

Enduring Understandings:

Probability and stochasticity are governed by rules and tendencies that can help us predict and anticipate patterns in the real world. Mathematicians can determine best-fit models for given sets of data. Math can be used to explain, understand, and predict real-world situations.

Essential Questions:

How do you distinguish between discrete and continuous random variables?

How do you identify the sample space of a probability experiment?

How do you find the probability of an event given that another event has occurred?

How do you use counting principles to find probabilities?

How are sequences and series used to model many mathematical ideas and realistic situations?

How does the concept of a limit lead to a derivative?

How are integrals used to measure changing quantities?

Content/Objectives

Instructional Actions

Content	Skills	Activities/Strategies	Evidence (Assessments)
What students will know	What students will be able to do	How we teach content and skills	How we know students have learned
• Solve counting problems	 Apply the general 	Math practice individually, whole	Written section
using the Addition	Multiplication Rule in a	group, and small group.	assessments
Principle.	uniform probability	Peer group leadership	Review Games
 Solve counting problems 	model, P(A and B), and		 Practice exercises and
using the Multiplication	interpret the answer in	Student presentations of concepts	assignments
Principle.	terms of the model.	and demonstration of skills	 White board
 Solve counting problems 	 Use permutations and 		demonstrations
using permutations	combinations to compute	Students given access to online	 Desmos Activities
involving n distinct	probabilities of	textbook	Written Topic
objects.	compound events and		Assessments
 Solve counting problems 	solve problems.	Partners or group work (groups	 Technology Assessments
using combinations.	 Use the mean and 	formed heterogeneously	 Benchmark 4 Assessment
• Find the number of	standard deviation for a	according to ability)	
subsets of a given set.	data set to fit the data to		
 Solve counting problems 	a normal curve (normal	Open Source activities below	
using permutations	distribution) and estimate	from Illustrative Math, Desmos,	
involving n non-distinct	population percentages.	Geogebra:	
objects.	Use Z scores.	• <u>The Titanic 1</u>	
 Apply the Binomial 	 Represent data on two 	• <u>The Titanic 2</u>	
Theorem.	quantitative variables on	<u>Geogebra - Conditional</u>	
Construct probability	a scatter plot, and	Probabilities and	
models.	describe how the	Independence	
• Compute probabilities of	variables are related.	 Finding Probabilities of 	
equally likely outcomes.	 Fit a function to the data; 	Compound Events	
Compute probabilities of	use functions fitted to	 <u>Geogebra - Conditional</u> 	
the union of two events.	data to solve problems in	Probabilities and	
• Use the complement rule	the context of the data.	Independence	
to find probabilities.	Use given function or	Bob's Bagel Shop	

- Compute probability using counting theory.
- Standard Deviation
- Normal distributions and Z scores
- Scatterplots
- Normal distributions are only appropriate for some data.
- Scatter plots can only be used to represent quantitative variables.
- The role of randomization in sample surveys, experiments, and observational studies.
- The difference between variables as quantitative or categorical
- Understand limit notation.
- Find a limit using a graph.
- Find a limit using a table.
- Find the limit of a sum, a difference, and a product.
- Find the limit of a polynomial.
- Find the limit of a power or a root.

- choose a function suggested by the context. Emphasize linear, quadratic, and exponential models
- Estimate the area under a normal curve using technology and explain the significance of this value in terms of probability and the original context.
- Sketch the function of best fit on a scatter plot and find the function using technology when necessary.
- Choose a probability model for a problem context.
- Conduct a simulation of a model and determine which results are typical or considered outliers.
- Calculate a sample mean or population.
- Determine how often the true population mean or proportion is within the margin of error of each

- Fred's Fun Factory
- <u>Sounds Really Good! (sort</u> <u>of...)</u>
- Random Walk III
- Random Walk IV
- <u>Alex, Mel, and Chelsea</u> <u>Play a Game</u>
- <u>Return to Fred's Fun</u> <u>Factory</u>
- The High School Gym
- <u>Mathemafish Population</u>
- Introduction to Limits
- Graphical Limits
- One-Sided Limits
- <u>Desmos Limits and</u> <u>Continuity</u>
- <u>Desmos Average Value</u> of a Function

- Find the limit of a quotient.
- Determine whether a function is continuous at a number.
- Determine the numbers for which a function is discontinuous.
- Determine whether a function is continuous.

sample mean or proportion.

- Conduct a simulation for each group using sample results as the parameters for the distributions.
- A function has a limit if the output values approach some value *L* as the input values approach some quantity *a*.
- A shorthand notation is used to describe the limit of a function according to the form $\lim x \rightarrow af(x)=L$, which indicates that as xapproaches a, both from the left of x=a and the right of x=a, the output value gets close to L.
- A function has a left-hand limit if f(x) approaches L as x approaches a where x<a. A function has a right-hand limit if f(x) approaches L as x approaches a where x>a.
 A two-sided limit exists if
 - A two-sided limit exists if the left-hand limit and the right-hand limit of a

	function are the same. A	
	function is said to have a	
	limit if it has a two-sided	
	limit.	
•	A graph provides a visual	
	method of determining	
	the limit of a function.	
•	If the function has a limit	
	as x approaches a, the	
	branches of the graph will	
	approach the same y-	
	coordinate near $x=a$ from	
	the left and the right. See	
•	A table can be used to	
	determine if a function	
	has a limit. The table	
	should show input values	
	that approach a from	
	both directions so that	
	the resulting output	
	values can be evaluated.	
	If the output values	
	approach some number,	
	the function has a limit.	
•	A graphing utility can also	
	be used to find a limit.	
•	The properties of limits	
	can be used to perform	
	operations on the limits	

of functions rather than	
the functions themselves.	
 The limit of a polynomial 	
function can be found by	
finding the sum of the	
limits of the individual	
terms.	
 The limit of a function 	
that has been raised to a	
power equals the same	
power of the limit of the	
function. Another	
method is direct	
substitution.	
 The limit of the root of a 	
function equals the	
corresponding root of the	
limit of the function.	
 One way to find the limit 	
of a function expressed as	
a quotient is to write the	
quotient in factored form	
and simplify.	
 Another method of 	
finding the limit of a	
complex fraction is to find	
the LCD.	
A limit containing a	
function containing a root	

may be evaluated using a	
conjugate.	
The limits of some	
functions expressed as	
quotients can be found	
by factoring.	
 One way to evaluate the 	
limit of a quotient	
containing absolute	
values is by using numeric	
evidence. Setting it up	
piecewise can also be	
useful.	
 A continuous function 	
can be represented by a	
graph without holes or	
breaks.	
 A function whose graph 	
has holes is a	
discontinuous function.	
• A function is continuous	
at a particular number if	
three conditions are met:	
• Condition 1: $f(a)$	
exists.	
• Condition 2:	
$\lim x \rightarrow a f(x)$	
exists at $x=a$.	
• Condition 3:	
$\lim x \rightarrow a f(x) = f(a)$	

F			
 A di ai di gr A re it di m Sc pi cc di cc di cc di ai ai<!--</td--><td>function has a jump iscontinuity if the left- ind right-hand limits are ifferent, causing the raph to "jump." function has a emovable discontinuity if can be redefined at its iscontinuous point to hake it continuous. Dome functions, such as oblynomial functions, are ontinuous everywhere. ther functions, such as ogarithmic functions, are ontinuous on their omain. or a piecewise function be continuous each feece must be continuous in its part of the domain and the function as a hole must be ontinuous at the oundaries.</td><td></td>	function has a jump iscontinuity if the left- ind right-hand limits are ifferent, causing the raph to "jump." function has a emovable discontinuity if can be redefined at its iscontinuous point to hake it continuous. Dome functions, such as oblynomial functions, are ontinuous everywhere. ther functions, such as ogarithmic functions, are ontinuous on their omain. or a piecewise function be continuous each feece must be continuous in its part of the domain and the function as a hole must be ontinuous at the oundaries.		
Spiraling for Mastery			
Content or Skill for this Unit	Spiral Focus from Previous Unit	Instructional Activity	
Represent sample spaces.Apply basic properties of probability.	Algebra II knowledge and skills • 7.SP.C.8	Students given handouts of powerpoint notes	

• Use two way frequency tables		Students given access to enline textbook	
 Use two-way frequency tables. Use D(A o D) as the probability of A and 	• F.IF.A.2	Students given access to online textbook	
 Use P(ATB) as the probability of A and Discovering to gother 		De studen de la construction (la construction de	
B occurring together.		Partners or group work (groups formed	
• Create visual displays of data sets.		heterogeneously according to ability)	
 Analyze data using statistical 			
measures		IXL Extra Practice and help:	
• The definition of event, sample space,		 Introduction to probability 	
union, intersection, and complement.		 <u>Calculate probabilities of events</u> 	
 Identify independent events. 		 <u>combinations and permutations</u> 	
 The definition of dependent events 		 Identify independent events 	
and conditional probability		 variance and standard deviation 	
Addition Rule with unions		 <u>find limits using graphs</u> 	
 Permutations and Combinations 		 find one-sided limits using graphs 	
 Average Rate of Change 		determine if a limit exists	
Functions			
21 st Century Skills:			
CRP2. Apply appropriate academic and technica	l skills.		
CRP8. Utilize critical thinking to make sense of p	roblems and persevere in solving them.		
CRP11. Use technology to enhance productivity.			
Career and Technical Education			
9.2.12.CAP.2: Develop college and career readin	ess skills by participating in opportunities	s such as structured learning experiences,	
apprenticeships, and dual enrollment programs.			
9.2.12.CAP.3: Investigate how continuing educat	ion contributes to one's career and perso	onal growth	
Key resources:			
Pre-Calculus: A Graphing Approach, Holt, Rinehart and Winston 2007, Chapters 13-14			
Desmos Activity Builder			
esmos Graphing Calculator Explorations			
Geometer's Sketchpad Explorations/Geogebra			

Interdisciplinary Connections

NJSLS ELA

NJSLSA.R7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words.

NJSLA Science

HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength,

and speed of waves traveling in various media.

HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the

change in energy of the other component(s) and energy flows in and out of the system are known.