

Pre-Calculus Unit 3: Analytic Geometry February-April (45 instructional days)

Targeted Standards

Cluster: Analyze the characteristics and properties of conic figures and conic sections. Understand polar coordinates and polar equations. Understand the complex number system and how it is applied to conics.	 G-CO.A4: Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. G-CO.A5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. G-GPE.A1: Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. G-GPE.A2: Derive the equation of a parabola given a focus and directrix. G-GPE.A3: (+)Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from the foci is constant. N-CN.B4: (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number.
--	---

Rationale and Transfer Goals:

This unit introduces students to analytic geometry through analysis of conic figures. Students continue building on Algebra II knowledge and review key areas of that course. Students begin to understand how to apply knowledge and skills in algebra, specifically involving exponents into the calculus-based application of logarithms. This bridge helps transition students to Calculus.

Enduring Understandings:

Shapes have certain properties that govern how they function in the real world.

Mathematicians can determine best-fit models for given sets of data.

Math can be used to explain, understand, and predict real-world situations.

Essential Questions:

What is analytical geometry?

How can technology be used to enhance the understanding of conics?

How are the shapes, known as conic sections, created?

How are equations of conic sections analyzed and graphed?

What are the similarities and differences in the equations of conic sections and the key features of their graphs?

How can the general form of a conic section equation be converted to standard form?

What real-world issues could be analyzed and solved using equations and graphs of conic sections?

Content/Objectives		Instructional Actions	
Content	Skills	Activities/Strategies	Evidence (Assessments)
What students will know	What students will be able to do	How we teach content and skills	How we know students have learned
 Write equations of ellipses in standard form. Graph ellipses centered at the origin. Graph ellipses not centered at the origin. Solve applied problems involving ellipses. Locate a hyperbola's vertices and foci. Write equations of hyperbolas in standard form. Graph hyperbolas centered at the origin. Graph hyperbolas not centered at the origin. 	 An ellipse is the set of all points (x,y) in a plane such that the sum of their distances from two fixed points is a constant. Each fixed point is called a focus When given the coordinates of the foci and vertices of an ellipse, we can write the equation of the ellipse in standard form. When given an equation for an ellipse centered at the origin in standard form, we can identify its 	Math practice individually, whole group, and small group. Peer group leadership Student presentations of concepts and demonstration of skills Students given access to online textbook Partners or group work (groups formed heterogeneously according to ability) Open Source activities below from Illustrative Math, Desmos, Geogebra:	 Written section assessments Review Games Practice exercises and assignments White board demonstrations Desmos Activities Written Topic Assessments Technology Assessments Benchmark 3 Assessment

- Solve applied problems involving hyperbolas.
- Graph parabolas with vertices at the origin.
- Write equations of parabolas in standard form.
- Graph parabolas with vertices not at the origin.
- Solve applied problems involving parabolas.
- Identify non degenerate conic sections given their general form equations.
- Use rotation of axes formulas.
- Write equations of rotated conics in standard form.
- Identify conics without rotating axes.
- Locate points in a polar coordinate system
- convert between rectangular and polar systems
- Create graphs of equations in polar coordinates

and the lengths and positions of the major and minor axes in order to graph the ellipse.

- When given the equation for an ellipse centered at some point other than the origin, we can identify its key features and graph the ellipse.
- Real-world situations can be modeled using the standard equations of ellipses and then evaluated to find key features, such as lengths of axes and distance between foci.
- A hyperbola is the set of all points (*x*,*y*) in a plane such that the difference of the distances between (*x*,*y*) and the foci is a positive constant.
- The standard form of a hyperbola can be used to locate its vertices and foci.
- When given the coordinates of the foci

- Explaining the equation for a circle
- <u>Defining Parabolas</u> <u>Geometrically</u>
- Building Conic Sections
- Polygraph: Conics
- Polygraph: Circles and Ellipses
- <u>Creative Conics</u>
- <u>Geogebra Conic Section</u>
- <u>Geogebra Hyperbolas</u>
- <u>Geogebra Ellipses</u>
- <u>Geogebra Parabolas</u>
- <u>Geogebra Conics in Polar</u> <u>Coordinates</u>
- <u>Geogebra Intro to Polar</u> <u>Coordinates</u>
- <u>Geogebra Battleship</u> (polar)

- Identify a conic in polar form.
- Graph the polar equations of conics.
- Define conics in terms of a focus and a directrix.
- and vertices of a hyperbola, we can write the equation of the hyperbola in standard form.
- When given an equation for a hyperbola, we can identify its vertices, co-vertices, foci, asymptotes, and lengths and positions of the transverse and conjugate axes in order to graph the hyperbola.
- Real-world situations can be modeled using the standard equations of hyperbolas. For instance, given the dimensions of a natural draft cooling tower, we can find a hyperbolic equation that models its sides.
- A parabola is the set of all points (*x*,*y*) in a plane that are the same distance from a fixed line, called the directrix, and a fixed point (the focus) not on the directrix.

	dard form of a
	with vertex (0,0)
	-axis as its axis
	etry can be used
to graph	the parabola. If
<i>p</i> >0, the	parabola opens
right. If p	<0, the
parabola	opens left.
The stand	dard form of a
parabola	with vertex (0,0)
and the y	r-axis as its axis
of symmetry	etry can be used
to graph	the parabola. If
<i>p</i> >0, the	parabola opens
up. If <i>p</i> <0), the parabola
opens do	wn.
When give	ven the focus and
directrix	of a parabola,
we can w	rrite its equation
in standa	rd form.
The stand	dard form of a
parabola	with vertex (<i>h</i> , <i>k</i>)
and axis	of symmetry
parallel t	o the x-axis can
be used t	o graph the
parabola	. If <i>p</i> >0, the
parabola	opens right. If
<i>p</i> <0, the	parabola opens
left.	

• The standard form of a
parabola with vertex (h,k)
and axis of symmetry
parallel to the y-axis can
be used to graph the
parabola. If $p>0$, the
parabola opens up. If
p<0, the parabola opens
down.
Real-world situations can
be modeled using the
standard equations of
parabolas. For instance,
given the diameter and
focus of a cross-section of
a parabolic reflector, we
can find an equation that
models its sides.
Four basic shapes can
result from the
intersection of a plane
with a pair of right
circular cones connected
tail to tail. They include
an ellipse, a circle, a
hyperbola, and a
parabola.
A nondegenerate conic
section has the general
form

	I.
$Ax^2+Bxy+Cy^2+Dx+Ey+F$	
=0 where A,B and C are	
not all zero. The values of	
A,B, and C determine	
the type of conic.	
Equations of conic	
sections with an xy term	
have been rotated about	
the origin.	
• The general form can be	
transformed into an	
equation in the x' and y'	
coordinate system	
without the $x'y'$ term.	
An expression is	
described as invariant if it	
remains unchanged after	
rotating. Because the	
discriminant is invariant,	
observing it enables us to	
identify the conic section.	
• Any conic may be	
determined by a single	
focus, the corresponding	
eccentricity, and the	
directrix. We can also	
define a conic in terms of	
a fixed point, the focus	
$P(r,\theta)$ at the pole, and a	
line, the directrix, which	

[· · · · · · · · · · · · · · · · · · ·		
	perpendicular to the		
	lar axis.		
	conic is the set of all		
ро	ints $e = \frac{PF}{PD}$, where		
	centricity e is a positive		
	al number. Each conic		
	ay be written in terms		
	its polar equation.		
• Th	e polar equations of		
	nics can be graphed.		
	nics can be defined in		
	ms of a focus, a		
	ectrix, and eccentricity.		
• We	e can use the identities		
r=	$\sqrt{x^2+y^2}, x=r\cos\theta,$		
	d $y=r \sin \theta$ to convert		
	e equation for a conic		
	m polar to rectangular		
for	m.		
• Co	nvert between		
red	tangular and polar		
со	ordinates		
• Ing	out data into graphing		
cal	culator for parametric		
pro	oblems		
Spiraling for Mastery			
Content or Skill for this Unit	Spiral Focus from Previous Unit	Instructional Activity	

• Should be able to determine if a	Algebra II and Trigonometry Sections	Students given handouts of powerpoint notes
relation is a function	• 8.G.A.1	
 Find the domain and range of 	• 8.G.A.2	Students given access to online textbook
functions	• 8.G.A.3	
 Evaluate piecewise-defined and 	• 8.G.B.8	Partners or group work (groups formed
greatest integer functions	• HS.G-CO.A.1	heterogeneously according to ability)
 Determine whether a graph 	• HS.G-CO.A.2	
represents a function	• HS.G-CO.A.4	IXL Remediation:
• Analyze graphs to determine domain,	HS.G-SRT.A.1	 <u>Convert between Radians and degrees</u>
range, local maxima and minima,	HS.A-REI.B.4a	 Solve a Right Triangle - Trig
inflection points, and intervals there	HS.A-REI.D.10	Graph Sine and Cosine Functions
they are increasing, decreasing,	• HS.N-CN.A.1	Find Properties of parabolas
concave up, and concave down.	HS.N-CN.A.3	Find properties of circles
Graph parametric equations		 find properties of hyperbolas
Define quadratic equations		 find properties of ellipses
• Find the vertex and intercepts of a		 Convert between rectangular and polar
quadratic function and sketch its		
graph.		
 Convert one form of a quadratic 		
function to another.		
• Evaluate Trigonometric Ratios		
 Solve Triangles using Trig 		
 Define Trig ratios in the coordinate 		
plane		
21 st Century Skills:		
CRP2. Apply appropriate academic and technica	al skills.	
CRP8. Utilize critical thinking to make sense of p		
CRP11. Use technology to enhance productivity.		
Career and Technical Education	•	

9.2.12.CAP.2: Develop college and career readiness skills by participating in opportunities such as structured learning experiences, apprenticeships, and dual enrollment programs.

9.2.12.CAP.3: Investigate how continuing education contributes to one's career and personal growth

Key resources:

Pre-Calculus: A Graphing Approach, Holt, Rinehart and Winston 2007, Chapter 11

Desmos Activity Builder

Desmos Graphing Calculator Explorations

Geometer's Sketchpad Explorations/Geogebra

Interdisciplinary Connections

NJSLS ELA

NJSLSA.R7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words.

NJSLA Science

HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength,

and speed of waves traveling in various media.

HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the

change in energy of the other component(s) and energy flows in and out of the system are known.