

Calculus Unit 4: Transcendental Functions

April - June (45 instructional days)

Targeted Standards

#	STUDENT LEARNING OBJECTIVES	CORRESPONDING NJSLS-Math
1	Definition of a natural logarithm function.	A.SSE.4
2	Properties of logarithmic functions.	A.SSE.2
3	The base of the natural logarithm ('discovering" e)	A.APR.3
4	Inverse functions and their derivatives.	HSF.LE.A.1
5	Exponential functions as inverses of logarithmic functions.	ID.A.4
6	Differentiation and Integration with logarithms and exponential functions.	F.IF.7
7	Logarithmic differential techniques.	F.IF.8
8	Exponential growth and decay problems.	F.IF.9
9	inverse trigonometric functions and their derivatives.	ID.A.1
		F.IF.4

Rationale and Transfer Goals:

Up to this point, students of study two types of elementary functions - algebraic functions and trigonometric functions. This unit concludes the introduction of elementary functions. As each new type is introduced, students will study its properties, its derivative, and its anti-derivative.

Enduring Understandings:

- Natural growth/decay is continuous.
- Logarithms can make differentiation simpler.

Essential Questions:

- What can we do with calculus that we could not do with algebra or geometry or trigonometry?
- Who needs to know calculus?
- What situations can be modeled by exponential or logarithmic functions?

Content/C	Dbjectives	Instruction	nal Actions
Content What students will know	Skills What students will be able to do	Activities/Strategies How we teach content and skills	Evidence (Assessments) How we know students have learned
→ On the basis of the assumption that the exponential function $y = b^x$, $b > 0$ is continuous everywhere and differentiable at 0, this function is differentiable	 → Find the derivative of exponential functions. → Find the derivative of logarithmic functions. → Use logarithmic differentiation to determine the derivative of a function. 	Math practice individually, whole group, and small group. Peer group leadership Student presentations of concepts and demonstration of skills	 Formative/Summative: Written section assessments Review Games Practice exercises and assignments White board demonstrations

→

→

→

 \rightarrow

		<u> </u>	
everywhere and there is a	→ Calculate the derivative of	Students given access to online	 Desmos Activities
formula for its derivative.	an inverse function.	textbook	Written Topic
We can use a formula to find	→ Recognize the derivatives of		Assessments
the derivative of $y = ln x$,	the standard inverse	Partners or group work (groups	 Iechnology Assessments Bonobrook 4 Assessments
and the relationship	trigonometric functions.	according to ability)	• <u>Benchmark 4 Assessment</u>
$log_{h}x = \frac{lnx}{lnh}$ allows us to	→ Integrate functions involving		
extend our differentiation formulas to include	 exponential functions. → Integrate functions involving 	Open Source activities below from Illustrative Math, Desmos,	
logarithms with arbitrary	logarithmic functions.	Geogebra:	
bases.	→ Integrate functions resulting	derivatives of exponential functions	
Logarithmic differentiation	functions	 derivatives of logarithmic 	
allows us to differentiate	\rightarrow Write the definition of the	functions	
functions of the form	natural logarithm as an	• integrals of exponential	
$y = g(x)^{f(x)}$ or very complex	integral.	functions	
functions by taking the	→ Recognize the derivative of	Integrals of logarithmic functions	
natural logarithm of both	the natural logarithm.	 derivatives of inverse 	
sides and exploiting the	→ Integrate functions involving	trigonometric functions	
properties of logarithms	the natural logarithmic	• integrals of inverse	
before differentiating.	function.	trigonometric functions	
The inverse function	\rightarrow Define the number <i>e</i>		
theorem allows us to	through an integral.		
compute derivatives of	→ Recognize the derivative and		
inverse functions without	integral of the exponential		
using the limit definition of	function.		
the derivative.	→ Prove properties of		
We can use the inverse	logarithms and exponential		
tunction theorem to develop	functions using integrals.		
differentiation formulas for			

	the inverse trigonometric	→ Express general logarithmic	
	functions.	and exponential functions in	
→	Exponential and logarithmic	terms of natural logarithms	
	functions arise in many	and exponentials.	
	real-world applications,		
	especially those involving		
	growth and decay.		
→	Substitution is often used to		
	evaluate integrals involving		
	exponential functions or		
	logarithms.		
→	Formulas for derivatives of		
	inverse trigonometric		
	functions developed in		
	Derivatives of Exponential		
	and Logarithmic Functions		
	lead directly to integration		
	formulas involving inverse		
	trigonometric functions.		
\rightarrow	Use the formulas listed in		
	the rule on integration		
	formulas resulting in inverse		
	trigonometric functions to		
	match up the correct format		
	and make alterations as		
	necessary to solve the		
	problem.		

→	Substitution is often required		
	to put the integrand in the		
	correct form.		
→	The earlier treatment of		
	logarithms and exponential		
	functions did not define the		
	functions precisely and		
	formally. This section		
	develops the concepts in a		
	mathematically rigorous way.		
→	The cornerstone of the		
	development is the		
	definition of the natural		
	logarithm in terms of an		
	integral.		
→	The function e^x is then		
	defined as the inverse of the		
	natural logarithm.		
→	General exponential		
	functions are defined in		
	terms of e^x , and the		
	corresponding inverse		
	functions are general		
	logarithms.		
→	Familiar properties of		
	logarithms and exponents		
	still hold in this more		
	rigorous context.		

	<u>Spiraling for Mastery</u>	
 Apply appropriate mathematical rules or procedures, with and without technology. Identify an appropriate mathematical rule or procedure based on the classification of a given expression. Knowledge of logarithmic, exponential, and inverse trigonometric functions. 	 Average Rate of Change Find instantaneous rates of change Velocity as a rate of change Velocity as a rate of change Find values of derivatives using limits Find the slope of a tangent line using limits Sum and Difference Rules Product Rule Quotient Rule Quotient Rule Chain Rule Derivatives of Polynomials Derivatives using Implicit Differentiation 	Students given handouts of powerpoint notes Students given access to online textbook Partners or group work (groups formed heterogeneously according to ability) iXL Review Sections: • Find derivatives of exponential functions • Find derivatives of logarithmic functions • Find derivatives of inverse trig functions • Find derivatives of inverse trig functions

<u>21 st</u>	Century Skills:	· · · · · · · · · · · · · · · · · · ·		
CRF	2. Apply appropriate academic and technica	l skills.		
CRF	P8. Utilize critical thinking to make sense of p	roblems and persevere in solving them.		
CRF	11. Use technology to enhance productivity.			
Car	eer and Technical Education			
9.2	9.2.12.CAP.2: Develop college and career readiness skills by participating in opportunities such as structured learning experiences,			
app	apprenticeships, and dual enrollment programs.			
9.2	.12.CAP.3: Investigate how continuing educat	tion contributes to one's career and perso	onal growth	
Key	Key resources:			
Cal	Calculus, by Larson, 9e			
TI-8	TI-84Plus Graphing Calculators			
ww	www.khanacademy.org			
Tes	Test Prep materials from the College Board and other publishers			
Теа	Teacher created worksheets and activities			

Interdisciplinary Connections

NJSLS ELA

NJSLSA.R7. Integrate and evaluate content presented in diverse media and formats, including visually and quantitatively, as well as in words.

NJSLA Science

HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the

HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.