

SAMPLE SYLLABUS #1

AP[°] Physics 1

Curricular Requirements

CR1	Students and teachers have access to college-level resources including a college-level textbook and reference materials in print or electronic format.	See page: 3
CR2	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 1: Kinematics as described in the AP Course and Exam Description (CED).	See page: 4
CR3	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 2: Dynamics.	See page: 4
CR4	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 3: Circular Motion and Gravitation.	See page: 5
CR5	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 4: Energy.	See page: 6
CR6	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 5: Momentum.	See page: 7
CR7	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 6: Simple Harmonic Motion.	See page: 7
CR8	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 7: Torque and Rotational Motion.	See page: 8
CR9	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 8: Electric Charge and Electric Force.	See page: 8
CR10	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 9: DC Circuits.	See page: 9
CR11	The course provides opportunities to develop student understanding of the required content and related big ideas outlined in Unit 10: Mechanical Waves and Sound.	See page: 10

CR12	The course provides opportunities for students to develop the skills related to Science Practice 1: Modeling.	See page: 12
CR13	The course provides opportunities for students to develop the skills related to Science Practice 2: Mathematical Routines.	See page: 13
CR14	The course provides opportunities for students to develop the skills related to Science Practice 3: Scientific Questioning.	See page: 11
CR15	The course provides opportunities for students to develop the skills related to Science Practice 4: Experimental Methods.	See page: 12
CR16	The course provides opportunities for students to develop the skills related to Science Practice 5: Data Analysis.	See page: 13
CR17	The course provides opportunities for students to develop the skills related to Science Practice 6: Argumentation.	See page: 12
CR18	The course provides opportunities for students to develop the skills related to Science Practice 7: Making Connections.	See page: 13
CR19	The course provides students with opportunities to apply their knowledge of AP Physics concepts to real-world questions or scenarios to help them become scientifically literate citizens.	See page: 14
CR20	Students spend a minimum of 25 percent of instructional time engaged in a wide range of hands-on laboratory investigations with an emphasis on inquiry-based labs to support the learning of required content and development of science practice skills throughout the course.	See page: 10
CR21	The course provides opportunities for students to record evidence of their scientific investigations in a portfolio of lab reports or a lab notebook (print or digital format).	See page: 14

Advanced Placement Physics 1 Sample Syllabus #1

Texts: Serway and Faughn. *College Physics.*, 6th ed. Philadelphia: Thomson, Brooks Cole, 2003 CR1

AP Physics 1 Student Workbook, College Board. 2019.

Course Outline

The AP[®] Physics 1 course meets every day, three days a week for 50 minutes and two days a week for 100 minutes. Each student receives two credits for the completion of the course. It is a stand-alone course. The course is an inquiry-based course that focuses on experimentation and also conceptual understanding. Lessons that are teacher oriented will include the derivation of equations, demonstrations of physical phenomena, vocabulary associated with the content, and addressing any questions from the students based upon the material covered. The content of this course is based upon 6 big ideas:

Big Idea 1 – Objects and systems have properties such as mass and charge. Systems may have internal structure.

Big Idea 2 – Fields existing in space can be used to explain interactions.

Big Idea 3 – The interactions of an object with other objects can be described by forces.

Big Idea 4 - Interactions between systems can result in charges in those systems.

Big Idea 5 – Changes that occur as a result of interactions are constrained by conservation laws.

Big Idea 6 – Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical model for the discretion of other phenomena.

Student Practice

Throughout each unit, **Topic Questions** will be provided to help students check their understanding. The Topic Questions are especially useful for confirming understanding of difficult or foundational topics before moving on to new content or skills that build upon prior topics. Topic Questions can be assigned before, during, or after a lesson, and as inclass work or homework. Students will get rationales for each **Topic Question** that will help them understand why an answer is correct or incorrect, and their results will reveal misunderstandings to help them target the content and skills needed for additional practice.

At the end of each unit or at key points within a unit, **Personal Progress Checks** will be provided in class or as homework assignments in AP Classroom. Students will get a personal report with feedback on every topic, skill, and question that they can use to chart their progress, and their results will come with rationales that explain every question's answer. One to two class periods are set aside to re-teach skills based on the results of the Personal Progress Checks.

CR1

The syllabus must cite the title, author, and publication date of an algebra-based, college-level textbook.

Course Content

Unit	Topics	Content	Science Practice	Big Idea
1 Kinematics CR2	1.1 Position, Velocity and Acceleration	 Vector Measurements of displacement and 	1.5 2.1	3, 4
	displacement and velocity	2.2 4.2		
		 Vector addition and subtraction 	5.1	
		 Systems of directional designations 		
		 Acceleration and related quantities 		
		 Relative Velocity 		
	1.2 Representations	 Gravitational 	1.2	
	of Motion	Acceleration	1.4	
		 Vector Addition 	2.2	
		Using Pythagorean	2.3	
		theorem, law of sines and cosine law	6.4	
		 Projectile motion 		

Complete Personal Progress Check MCQ for Unit 1. Complete Personal Progress Check FRQ for Unit 1. Take Unit 1 Test.

2 Dynamics CR3	2.1 Systems		1.1 7.1	1,
	2.2 The Gravitational Field	 Weight Gravitational field strength 	2.2 7.2	
	2.3 Contact Forces	Normal ForceTensionFrictionSpring Force	6.1 6.2	
	2.4 Newton's First Law	 Inertial mass vs. Gravitational Mass Newton's First Law 	4.2	
	2.5 Newton's Third Law and Free Body Diagrams	Free Body DiagramsNewton's Third Law	1.1 1.4 6.1 6.2 6.4 7.2	
	2.6 Newton's Second Law	 Newton's Second Law 	1.1 1.4 1.5 2.2 4.2 5.1 6.4 7.2	
Complete Perso	onal Progress Check MCQ	A for Unit 2.		

CR2

The syllabus must include the Unit 1 content listed below with the associated Big Ideas 3 and 4, Force Interactions (INT) and Change (CHA):

- 1-D Kinematics
- 2-D Kinematics
- Relative Motion

CR3

2, 3, 4

The syllabus must include the Unit 2 content listed below with the associated Big Ideas 1, 2, 3, and 4: Systems (SYS), Fields (FLD), Force Interactions (INT), and Change (CHA):

- Newton's Three Laws
- Free-Body Diagrams

Complete Personal Progress Check MCQ A for Unit 2.

Unit	Topics	Content	Science Practice	Big Idea
	2.7 Applications of Newton's Second Law	 Applications of Newton's Second Law including friction in uniform and accelerated conditions, both at angled and horizontal and vertical surfaces 	1.2 1.4 2.2 2.3 5.3 6.4	
-	onal Progress Check MCC onal Progress Check FRQ st.			
3 Circular	3.1 Vector Fields	_	N/A	1, 2, 3, 4
Motion and Gravitation CR4	3.2 Fundamental Forces	 Gravitational Force Electromagnetic force Weak and Strong forces 	7.1	
	3.3 Gravitational and Electric Forces	 Newton's Universal Law of Gravitation Connection between Gravitational Force and Electric Force 	2.2 7.2	
	3.4 Gravitational Field/ Acceleration Due to Gravity on Different Planets	 Weight on different planets 	2.2 7.2	
	3.5 Inertial vs. Gravitational Mass	 Inertial vs. Gravitational Mass 	4.2	
	3.6 Centripetal Acceleration and Centripetal Force	 Centripetal Acceleration 	5.3	
	3.7 Free Body Diagrams for Objects in Uniform Circular Motion	 Analysis of objects in uniform circular motion including conical pendulums. 	1.1 1.4 1.5 2.2 4.2 5.1	_
	Complete Personal Pro	gress Check MCQ A for Unit 3		
	3.8 Applications of Circular Motion and Gravitation	 Orbital Circular Motion Applications of Circular Motion and Gravitation 	1.1 1.4 1.5 2.1 2.2 4.2 5.1 6.2 6.4	

The syllabus must include the Unit 3 content listed below with the associated Big Ideas 1, 2, 3, and 4: Systems (SYS), Fields (FLD), Force Interactions (INT), and Change (CHA):

 Universal Law of Gravitation

Circular Motion

Unit	Topics	Content	Science Practice	Big Idea
-	rsonal Progress Check MCQ rsonal Progress Check FRQ Fest.			
4 Energy CR5	4.1 Open and Closed Systems: Energy	Defining SystemsConserved vs. Constant	6.4 7.2	3, 4, 5
	4.2 Work and Mechanical Energy	 Work Kinetic Energy Work/Energy Theorem Potential Energy 	1.4 2.1 2.2 6.4 7.2	_
	4.3 Conservation of Energy, the Work- Energy Principle, and Power	 Conservation of Mechanical Energy Power 	1.4 1.5 2.1 2.2 4.2 5.1 6.4 7.2	_
Complete Pe	rsonal Progress Check MCQ rsonal Progress Check MCQ rsonal Progress Check FRQ : Foot	B for Unit 4.	7.2	

The syllabus must include the Unit 4 content listed below with the associated Big Ideas 3, 4, and 5: Force Interactions (INT), Change (CHA), and Conservation (CON):

- Systems
- Work
- Conservation of Energy
- Power

Unit	Topics	Content	Science Practice	Big Idea
5 Momentum CR6	 5.1 Momentum and Impulse 5.2 Representations of Changes in Momentum 5.3 Open and Closed Systems: Momentum 5.4 Conservation of Linear Momentum 	 Center of Mass Momentum Change in Momentum Impulse Change in Momentum from representations Graph of net external force vs. time and change in momentum vs. time Defining Systems Conserved vs. Constant Center of Mass motion during collisions/explosions Elastic & Inelastic Collisions Using Conservation of Momentum and Energy to make predictions 	2.1 4.1 4.2 5.1 6.4 1.4 2.2 5.1 6.4 7.2 2.1 2.2 3.2 4.1 4.2 4.1 5.1	3, 4, 5
Complete Perso	onal Progress Check MCQ onal Progress Check MCQ onal Progress Check FRQ st. 6.1 Period of Simple Harmonic Oscillators	B for Unit 5.	7.2 2.2 4.2 5.1 6.2 6.4	3, 5

The syllabus must include the Unit 5 content listed below with the associated Big Ideas 3, 4, and 5: Force Interactions (INT), Change (CHA), and Conservation (CON):

- Impulse
- Conservation of Momentum
- Center of Mass

6 Simple Harmonic Motion CR7	6.1 Period of Simple Harmonic Oscillators	 Hooke's Law Simple Harmonic Motion Pendulums Mass-Spring Systems 	2.2 4.2 5.1 6.2 6.4 7.2	3, 5
	6.2 Energy of Simple Harmonic Oscillators	 Energy Analysis of Simple Harmonic Oscillators 	1.4 2.1 2.2 6.4 7.2	

Complete **Personal Progress Check MCQ** for Unit 6. Complete **Personal Progress Check FRQ** for Unit 6. Take **Unit 6 Test**.

CR7

The syllabus must include the Unit 6 content listed below with the associated Big Ideas 3 and 5, Force Interactions (INT) and Conservation (CON):

 Mass-Spring Oscillation

Simple Pendulum

Unit	Topics	Content	Science Practice	Big Idea
7 Torque	7.1 Rotational	 Rotational 	1.5	3, 4, 5
and	Kinematics	Kinematics	2.1	
Rotational Motion			2.2	
CR8	7.2 Torque and	 Definition of Torque 	1.4	
	Angular	 Force Diagrams 	2.1	
	Acceleration	 Rotational Inertia 	2.2	
		 Static Equilibrium 	2.3	
		 Rotational Dynamics 	4.1	
		 Rotational Impulse 	4.2	
			5.1	
			5.3	
			6.4	
			7.2	
	7.3 Angular	 Angular Momentum 	1.2	
	Momentum	 Rotational Kinetic 	1.4	
	and Torque	Energy	2.2	
			3.2	
			4.1	
			4.2	
			5.1	
			5.3	
	7.4 Conservation	 Conservation of 	2.1	
	of Angular Momentum	Angular Momentum	2.2	
	Momentum	 Collisions involving 	6.4	
		objects free to rotate and/or translate.	7.2	
Complete Pers	onal Progress Check MC	Q A for Unit 7.		
Complete Pers	onal Progress Check MC	Q B for Unit 7.		
Complete Pers Take Unit 7 Te	onal Progress Check FRQ st.	for Unit 7.		
8 Electric	8.1 Conservation	 Identifying Electrical 	6.4	1, 3, 5
Charge and Electric	of Charge	Systems	7.2	
Force	8.2 Electric Charge	 Identifying Electric 	1.5	
CR9		Charges	6.1	
		 Conservation of Charge 	6.2	
		Charge	6.4	
			7.2	
	8.3 Electric Force	 Coulomb's Law for 	2.2	
		point charges	6.4	
		P	0.4	

Complete Personal Progress Check MCQ for Unit 8. Take Unit 8 Test.

CR8

The syllabus must include the Unit 7 content listed below with the associated Big Ideas 3, 4, and 5: Force Interactions (INT), Change (CHA), and Conservation (CON):

- Rotational Kinematics
- Rotational Dynamics
- Rotational Kinetic Energy
- Conservation of Angular Momentum
- Force Diagrams

CR9

The syllabus must include the Unit 8 content listed below with the associated Big Ideas 1, 3, and 5: Systems (SYS), Force Interactions (INT), and Conservation (CON):

- Coulomb's Law
- Conservation of Charge

Unit	Topics	Content	Science Practice	Big Idea
9 DC Circuits CR10	9.1 Definition of Current	 Conservation of Charge in a Circuit Definition of Current Circuit Pieces Including wires, bulbs, resistors, batteries, ammeters, voltmeters and switches 	6.4 7.2	1, 5
	9.2 Resistivity	ResistivityResistance	4.1	_
	9.3 Ohm's Law Kirchhoff's Loop Rule (Resistors in Series and Parallel)	 Sources of Voltage in Series and Parallel Circuits Adding Resistors in Series and Parallel Drawing and using Circuit Schematics Conservation of Energy in Circuits Kirchhoff's Loop Rule Ohm's Law Ohmic and Non- Ohmic materials. 	1.1 1.4 2.2 4.2 6.4 7.2	
	9.4 Kirchhoff's Junction Rule, Ohm's Law (Resistors in Series and Parallel)	 Power Brightness of bulbs Conservation of Charge in Circuits Kirchhoff's Junction Rule 	1.4 2.2 4.1	_

The syllabus must include the Unit 9 content listed below with the associated Big Ideas 1 and 5, Systems (SYS) and Conservation (CON):

- Resistivity
- Ohm's Law
- Kirchhoff's Rules

AP-Course Audit Teacher Resources

Unit	Topics	Content	Science Practice	Big Idea
10	10.1 Properties	 Transverse and 	1.2	6
Mechanical Waves and	of Waves	Longitudinal Waves	1.4	
Sound		Wave Pulses	6.2	
CR11		Wave Characteristics	6.4	
		 Standing Waves 	7.2	
		 Sound Transfers Energy & Momentum 		
		 Producing Sound 		
		 The Speed of Sound 		
	10.2 Periodic Waves	 Relationship 	1.4	
		Between Wave Speed, Frequency	2.2	
		and Wavelength	4.2	
		 Visual 	5.1	
		Representations of Periodic Waves	7.2	
		 Wave Front Diagrams and Doppler Effect 		
	10.3 Interference	 Principle of 	1.1	_
	and Superposition	Superposition	1.2	
	(Waves in Tubes and on Strings)	 Standing Waves In Onen on d 	1.4	
	and on burngo,	in Open-Open and Open-Closed Tubes	1.5	
		 Pressure vs. 	2.1	
		Displacement Waves	2.2	
		 Standing Waves on 	3.2	
		Strings	4.1	
		 Musical Instruments 	4.2	
		 Harmonics 	5.1	
		 Resonance 	5.2	
		 Beats 	5.3	
			6.1	
			6.4	

Complete **Personal Progress Check MCQ A** for Unit 10. Complete **Personal Progress Check MCQ B** for Unit 10. Complete **Personal Progress Check FRQ** for Unit 10. Take **Unit 10 Test**.

Labs

Laboratory investigations will occupy 25-50% of our class time, usually filling at least one entire double block. In the laboratory investigations students, will learn and master the usage of physical and scientific equipment. Students will use different methods of measuring, charting, calculating, and error analysis while completing the investigations. These investigations can be used to either introduce a new topic or to reinforce material previously covered. All investigations are typically guided, with the variables needed to be measured and calculated identified for the students. Of the labs performed, more than half are guided - and open-inquiry based. Below is a table of Lab Investigations: CR20

CR11

The syllabus must include the Unit 10 content listed below with the associated Big Idea 6, Waves (WAV):

- Mechanical Waves and Sound
- Superposition/ Interference
- Doppler Effect

CR20

The syllabus must include an explicit statement that at least 25 percent of instructional time is spent engaged in hands-on laboratory investigations, with an emphasis on inquiry-based labs.

AND

Laboratory investigations must be listed with a title and brief description. Guided- and open-inquiry labs must be labeled.

	Name	Description	Science Practices
Unit 1: Kinematics	Runner Lab	Reproduce motion graphs using computer software	1.1, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.4, 7.2
	Incline Plane Lab [G.I.]	Graphically determine the acceleration of an object on an inclined plane	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
	Gravitational Constant Lab [G.I.]	Graphically compare the acceleration of objects that are undergoing freefall	1.4, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.4, 7.2
	2d Motion Lab #1	Determine the initial velocity of an object being launched horizontally from a table	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
	2d Motion Lab #2 [G.I.]	Determine the initial velocity and angle of a projectile, and predict where the object will land	1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
Unit 2: Dynamics	Tension Lab	Determine the tension in three different strings that are attached to a hanging mass	1.1, 1.4, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.1, 5.3, 6.1, 6.4, 7.2
	Newton's 2nd Law Lab [O.I.]	Determine the relationship between the acceleration of a cart, its mass and the net force applied to the cart CR14	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, 5.1, 5.2, 5.3, 6.1, 6.2, 6.4, 7.2
	Atwood Machine Lab	Determine the acceleration of objects and the tension in the string for an Atwood Machine	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
	Angle of Repose Lab	Determine the angle of repose for multiple surface combinations	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
	Friction Lab [O.I.]	Using computer software compare coefficients of static and kinetic friction for different surface combinations using multiple methods	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
Unit 3: Circular Motion and Gravitation	Whirligig Lab [O.I.]	Determine the tension in the string on an object that undergoing centripetal acceleration. Compare theoretical and experimental periods	1.1, 1.2, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
	Moon Lab	Graphically determine the mass of Jupiter by researching the planet's moons	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4, 7.1

The syllabus must include one assignment, activity, or lab describing how students engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course. The assignment, activity, or lab must be labeled with the relevant practice(s) associated with Science Practice 3.

As long as one practice under Science Practice 3 is represented, evidence is sufficient.

	Name	Description	Science Practices
Unit 4: Energy	Rollercoaster Lab	Find the mechanical energy lost by a ball going around a rollercoaster by using forces, energy, and 2D motion	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
	Conservation Lab	Determine if the mechanical energy of a dropped object is constant using video analysis	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
	Energy Lost Due to Friction Lab	Determine the mechanical energy dissipated by a non- conserved force exerted on an object accelerating on a table CR12 CR17	1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 6.5, 7.2
Unit 5: Momentum	Collisions Lab	Investigate conservation of momentum in different types of collisions	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
	Impulse Lab [G.I.]	Graphically compare the impulse of an object hitting a force sensor in momentum experienced by the object	1.1, 1.4, 1.5, 2.1, 2.2, 3.1, 4.1, 4.2, 4.3, 5.3, 6.1, 6.4, 7.2
Unit 6: Simple Harmonic Motion	Spring constant lab [G.I.]	Use multiple methods to determine the spring constant of a spring and compare the results CR15	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
	Pendulum Lab [O.I.]	Determine what factors influence the period of a pendulum	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
	Oscillating Spring Lab [G.I.]	Determine what factors influence the period of an oscillating spring	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
	Energy in Springs Lab	Investigate conservation of energy for an oscillating spring	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4, 7.2

The syllabus must include one assignment, activity, or lab describing how students use representations and models to communicate scientific phenomena and solve scientific problems. The assignment, activity, or lab must be labeled with the relevant practice(s) (e.g., "1.2") associated with Science Practice 1.

As long as one practice under Science Practice 1 is represented, evidence is sufficient.

CR17

The syllabus must include one assignment, activity, or lab describing how students work with scientific explanations and theories. The assignment, activity, or lab must be labeled with the relevant practice(s) associated with Science Practice 6.

As long as one practice under Science Practice 6 is represented, evidence is sufficient.

CR15

The syllabus must include one assignment, activity, or lab describing how students plan and implement data collection strategies in relation to a particular scientific question. The assignment, activity, or lab must be labeled with the relevant practice(s) associated with Science Practice 4.

As long as one practice under Science Practice 4 is represented, evidence is sufficient.

	Name	Description	Science Practices
Unit 7: Torque and Rotational Motion	Equilibrium Lab [O.I.]	Build an apparatus and that is equilibrium when placed on a pivot point CR16 CR18	$\begin{array}{c} 1.1,1.2,1.4,1.5,2.1,\\ 2.2,3.1,4.1,4.2,4.3,\\ 5.1,5.2,5.3,6.1,\\ 6.2,6.4,7.1,7.2 \end{array}$
	Torque Lab	Determine the relationship between torque and the angular acceleration of the system	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4, 7.2
	Moment of Inertia Lab [G.I.]	Determine what factors affect an object's rotational inertia	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
	Rotational Energy Lab	Using computer software, explore if mechanical energy is constant as object rolls down an incline	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
	Angular Momentum Lab	Compare the experimental and theoretical results of the conservation of angular momentum	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
Unit 8: Electrical Charge and electric Force	Charging Lab [G.I.]	Use a variety of methods to make observations of interactions between charged objects	1.2, 3.1, 4.1, 4.2, 5.1, 6.2, 7.2
	Pith Balls Lab [G.I.]	Determine the charge stored on a pair of charged pith balls repelling each other	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4, 7.2
Unit 9: DC Circuits	Building Circuits Lab	Compare the theoretical and experimental results of equivalent resistances for complex circuits CR13	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
	Ohm's Law Lab [G.I.]	Explore current and voltage drops across a number of resistors hooked up to a power supply in both series and parallel circuits	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
	Ohmic vs Non- ohmic Lab [G.I.]	Determine if objects are ohmic or non-ohmic	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
	Brightness Lab [G.I.]	Investigate how removing bulbs affect the brightness of other bulbs in the circuit	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
Unit 10: Mechanical Waves and Sound	Sound Lab	Find the speed of sound using an open- closed pipe system	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4
	Oscillator Lab [G.I.]	Determine the frequency of an oscillator by varying different factors	1.1, 1.4, 2.1, 2.2, 3.3, 4.1, 4.2, 4.3, 4.4, 5.1, 6.1, 6.2, 6.4

The syllabus must include one assignment, activity, or lab describing how students perform data analysis and evaluation of evidence. The assignment, activity, or lab must be labeled with the relevant practice(s) associated with Science Practice 5.

As long as one practice under Science Practice 5 is represented, evidence is sufficient.

CR18

The syllabus must include one assignment, activity, or lab describing how students connect and relate knowledge across various scales, concepts, and representations in and across domains. The assignment, activity, or lab must be labeled with the relevant practice(s) associated with Science Practice 4.

As long as one practice under Science Practice 7 is represented, evidence is sufficient.

CR13

The syllabus must include one assignment, activity, or lab describing how students use mathematics appropriately. The assignment, activity, or lab must be labeled with the relevant practice(s) associated with Science Practice 2.

As long as one practice under Science Practice 2 is represented, evidence is sufficient. In these laboratory investigations students, will work in groups, but each student is responsible for completing their own work and paper lab report. Each lab report will consist of:

- Title
- Purpose: What is the purpose of the lab? What are we trying to find?
- Design: A diagram of the lab setup, list of equipment, and description of procedure
- Data: All data that is collected in the lab.
- Data Analysis: Any calculations done in the lab, including graphs
- Error Analysis: Sources of error and their effect on results
- Conclusion: A statement that describes the purpose and essence of the investigation.

All lab reports will be collected in a final lab portfolio (hardcopy or electronic). CR21

Pens with Friends

One of the most important skills for success in AP Physics 1 is argumentation. During each unit, students will participate in two rounds of "Pens with Friends". "Pens with Friends" consists of two parts: "Friends without Pens" and "Pens without Friends". The first part, students are paired up randomly and given a problem that pertains to the current unit. Students will have a set amount of time to discuss the problem, without writing anything down. This will help students develop oral scientific argumentation skills. The second part, "Pens without Friends", students will work on the same problem, independently without discussing it with anyone else. This will help students develop writing scientific argumentation skills. When both parts are complete, students will then grade a random classmates written portion in hopes to help the student understand the AP grading process.

Final Project

After the AP Exam in May, students will work on their final projects. Students will have three different options to choose from. The first option is students can work in groups to perform a video analysis on a physical phenomenon using logger pro. The video analysis must include content from a minimum of 3 of the units listed above. The second option is students can independently complete a research project on how the laws of physics can be applied to situations in the real world. The paper must contain content from a minimum of 5 of the units listed above. Lastly students can choose a current real-life issue or scenario that is affecting society and discuss how physics impacts the issue. This must contain content from a minimum of 2 of the units listed above. There will be more information given about the final project after the AP exam. **CR19**

Grading

In terms of grading, there are approximately 3 quizzes per quarter, two quarter exams, Pens with Friends, and also homework and laboratory assignments. The quarter grades are split approximately 5% homework, 5% Pens with Friends, 10% Labs, 40% quizzes, and 40% quarter tests

CR21

The syllabus must include the components of the written reports required of students for all laboratory investigations.

AND

The syllabus must include an explicit statement that students are required to maintain a lab notebook or portfolio (hard copy or electronic) that includes all their lab reports.

CR19

The syllabus must label and provide a description of at least one assignment or activity requiring students to apply their knowledge of AP Physics concepts to understand real-world questions or scenarios.