8 Algebra 1 Unit 06: Exponential Functions and Sequences

Content Area:	Mathematics
Course(s):	
Time Period:	January
Length:	$\mathbf{1 7}$ days
Status:	Published

Unit Overview

Students are expected to work together on explorations, make conjectures, construct viable arguments, and critique the reasoning of others.

Focus on Major Work Chapter 6:

- understanding exponential functions and sequences.
- extend the properties of integer exponents to rational exponents.
- introduction of exponential functions and making a connection between exponential functions and geometric sequences.

Students will be able to...

- understand exponential functions and sequences.
- identify and use properties of exponents.
- describe exponential functions.
- analyze data, a graph or a context to determine whether it represents exponential growth or decay.
- model using an exponential function or a geometric sequence.

Standards

MA.N-Q.A. 3

MA.F-BF.A. 2

MA.F-BF.A.1a

MA.F-BF.A.1b
MA.F-BF.B. 3

MA.F-IF.A. 1

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Determine an explicit expression, a recursive process, or steps for calculation from a context.

Combine standard function types using arithmetic operations.
Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

MA.F-IF.A. 2
Use function notation, evaluate functions for inputs in their domains, and interpret
statements that use function notation in terms of a context.

MA.F-IF.A. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.
MA.F-IF.B. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
MA.F-IF.B. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
MA.F-IF.C. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
MA.F-IF.C.7a	Graph linear and quadratic functions and show intercepts, maxima, and minima.
MA.F-IF.C.7b	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
MA.F-IF.C.7e	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
MA.F-LE.A. 2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
MA.F-LE.A.1a	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
MA.F-LE.A.1b	Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
MA.F-LE.A.1c	Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
MA.F-LE.B. 5	Interpret the parameters in a linear or exponential function in terms of a context.
MA.N-RN.A. 1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.
MA.N-RN.A. 2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.
MA.S-ID.B.6a	Fit a function to the data (including with the use of technology); use functions fitted to data to solve problems in the context of the data.
MA.A-CED.A. 1	Create equations and inequalities in one variable and use them to solve problems.
MA.A-CED.A. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
MA.A-REI.A. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
MA.A-REI.D. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
MA.A-REI.D. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.
MA.A-SSE.A.1a	Interpret parts of an expression, such as terms, factors, and coefficients.
MA.A-SSE.A.1b	Interpret complicated expressions by viewing one or more of their parts as a single entity.

Materials

- Algebra 1
- 6.1 Properties of Exponents
- 6.2 Radicals and Rational Exponents
- 6.3 Exponential Functions
- 6.4 Exponential Growth and Decay
- 6.5 Solving Exponential Equations
- 6.6 Geometric Sequences
- 6.7 Recursively Defined Sequences
- ST Math
- 3 Act Lessons
- Brainingcamp Manipulatives
- Desmos
- Brainpop Resources
- Delta Math

Technology

- 8.1.5.A.1,2,4 (solve problems, word processing, databases, spreadsheets)
- 8.1.5.F.1 (digital tools to support scientific finding)
- 8.2.5.C.1,2,3 (solve problems, troubleshoot repair tools)

Assessment

Formative Assessment

- Teacher Observation
- Daily Quick Check
- Quizzes
- Exit Tickets

Summative Assessment

- Topic Tests
- Benchmark Tests
- Alternative Assessments: Performance Tasks \& Projects

Accommodations \& Modifications

Special Education

- Follow IEP Plan which may contain some of the following examples...
- In class/pull out support with special ed teacher
- Additional time during intervention time
- Preferred seating
- Questions read aloud
- Extended time for completing tasks
- Graphic organizers
- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Limit number of questions
- Scribe
- Manipulatives
- Calculators
- Reteach pages
- Leveled homework
- Lesson intervention activities
- Math Diagnosis \& Intervention System
- Another look homework video
- Practice buddy

504

- In class/pull out support with special ed teacher Additional time during intervention time
- Preferred seating
- Questions read aloud
- Extended time for completing tasks Graphic organizers
- Vocabulary support Mnemonic devices
- Songs/videos to reinforce concepts Limit number of questions
- Scribe Manipulatives Calculators Reteach pages Leveled homework
- Lesson intervention activities
- Math Diagnosis \& Intervention System Another look homework video
- Practice buddy

ELL

- Translation device/dictionary
- In class/pull out support with ESL teacher
- Preferred seating
- Questions read aloud
- Extended time for completing tasks
- Graphic organizers
- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Manipulatives
- Math Diagnosis \& Intervention System

At-risk of Failure

- Additional time during intervention time
- Questions read aloud
- Graphic organizers
- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Manipulatives
- Calculators
- Reteach pages
- Leveled homework
- Lesson intervention activities
- Math Diagnosis \& Intervention System
- Another look homework video
- Practice buddy

Gifted \& Talented

- Independent projects
- Enrichment pages
- Online games
- Leveled Homework
- Extension Activities
- Today's Challenge

Interdisciplinary Connections

ELA: NJSLSA.R1. Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.

Science: MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

21st Century Life Literacies \& Key Skills

- 9.4.8.GCA.2: Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal
- 9.4.8.IML.3: Create a digital visualization that effectively communicates a data set using formatting techniques such as form, position, size, color, movement, and spatial grouping
- 9.4.8.IML.4: Ask insightful questions to organize different types of data and create meaningful
visualizations.
- 9.4.8.TL.1: Construct a spreadsheet in order to analyze multiple data sets, identify relationships, and facilitate data-based decision-making
- 9.4.8.TL.3: Select appropriate tools to organize and present information digitally.

Career Ready Practices

- CRP1. Act as a responsible and contributing citizen and employee.
- CRP2. Apply appropriate academic and technical skills.
- CRP4. Communicate clearly and effectively and with reason.
- CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
- CRP12. Work productively in teams while using cultural global competence.

