8 Algebra 1 Unit 08: Graphing Quadratic Functions

Content Area: Mathematics
Course(s):
Time Period:
Length:
March
Status: 15 days
Published

Unit Overview

Students are expected to work together on explorations, make conjectures, construct viable arguments, and critique the reasoning of others.

Focus on Major Work Chapter 8:

- graphing quadratic functions.
- analyze different forms of quadratic functions to identify characteristics.
- standard form and vertex form are developed by transforming the parent function $f(x)=x^{2}$.
- intercept form is developed from identifying the x -intercepts of the graph.

Students will be able to...

- understand graphing quadratic functions
- identify characteristics of quadratic functions
- describe how to graph quadratic functions in different forms
- find zero of functions using intercept form
- choose an appropriate function to model data.

Standards

MA.N-Q.A. 1

MA.N-Q.A. 2
MA.N-Q.A. 3

MA.F-BF.A.1a

MA.F-BF.A.1b
MA.F-BF.B. 3

MA.F-IF.A. 1

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

Define appropriate quantities for the purpose of descriptive modeling.
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.
Determine an explicit expression, a recursive process, or steps for calculation from a context.
Combine standard function types using arithmetic operations.
Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

MA.F-IF.A. 2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
MA.F-IF.B. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
MA.F-IF.B. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
MA.F-IF.B. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
MA.F-IF.C. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
MA.F-IF.C.7a	Graph linear and quadratic functions and show intercepts, maxima, and minima.
MA.F-IF.C.7e	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.
MA.F-IF.C.8a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
MA.F-LE.A. 2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
MA.F-LE.A. 3	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
MA.F-LE.A.1b	Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
MA.F-LE.A.1c	Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
MA.A-APR.A. 1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
MA.A-APR.B. 3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
MA.A-CED.A. 1	Create equations and inequalities in one variable and use them to solve problems.
MA.A-CED.A. 2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
MA.A-CED.A. 3	Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
MA.A-REI.A. 1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
MA.A-REI.B. 3	Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
MA.A-REI.D. 10	Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
MA.A-REI.D. 11	Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

Materials

- Algebra 1
- 8.1 Graphing $f(x)=a x^{2}$
- 8.2 Graphing $f(x)=a x^{2}+c$
- 8.3 Graphing $f(x)=a x^{2}+b x+c$
- 8.4 Graphing $f(x)=a(x-h)^{2}+k$
- 8.5 Using Intercept Form
- 8.6 Comparing Linear, Exponential, and Quadratic Functions
- ST Math
- 3 Act Lessons
- Brainingcamp Manipulatives
- Desmos
- Brainpop Resources
- Delta Math

Technology

- 8.1.5.A.1,2,4 (solve problems, word processing, databases, spreadsheets)
- 8.1.5.F. 1 (digital tools to support scientific finding)
- 8.2.5.C.1,2,3 (solve problems, troubleshoot repair tools)

Assessment

Formative Assessment

- Teacher Observation
- Daily Quick Check
- Quizzes
- Exit Tickets

Summative Assessment

- Topic Tests
- Benchmark Tests
- Alternative Assessments: Performance Tasks \& Projects

Special Education

- Follow IEP Plan which may contain some of the following examples...
- In class/pull out support with special ed teacher
- Additional time during intervention time
- Preferred seating
- Questions read aloud
- Extended time for completing tasks
- Graphic organizers
- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Limit number of questions
- Scribe
- Manipulatives
- Calculators
- Reteach pages
- Leveled homework
- Lesson intervention activities
- Math Diagnosis \& Intervention System
- Another look homework video
- Practice buddy

504

- In class/pull out support with special ed teacher Additional time during intervention time
- Preferred seating
- Questions read aloud
- Extended time for completing tasks Graphic organizers
- Vocabulary support Mnemonic devices
- Songs/videos to reinforce concepts Limit number of questions
- Scribe Manipulatives Calculators Reteach pages Leveled homework
- Lesson intervention activities
- Math Diagnosis \& Intervention System Another look homework video
- Practice buddy

ELL

- Translation device/dictionary
- In class/pull out support with ESL teacher
- Preferred seating
- Questions read aloud
- Extended time for completing tasks
- Graphic organizers
- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Manipulatives
- Math Diagnosis \& Intervention System

At-risk of Failure

- Additional time during intervention time
- Questions read aloud
- Graphic organizers
- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Manipulatives
- Calculators
- Reteach pages
- Leveled homework
- Lesson intervention activities
- Math Diagnosis \& Intervention System
- Another look homework video
- Practice buddy

Gifted \& Talented

- Independent projects
- Enrichment pages
- Online games
- Leveled Homework
- Extension Activities
- Today's Challenge

Interdisciplinary Connections

ELA: NJSLSA.R1. Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.

Science: MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

21st Century Life Literacies \& Key Skills

- 9.4.8.GCA.2: Demonstrate openness to diverse ideas and perspectives through active discussions to achieve a group goal
- 9.4.8.IML.3: Create a digital visualization that effectively communicates a data set using formatting techniques such as form, position, size, color, movement, and spatial grouping
- 9.4.8.IML.4: Ask insightful questions to organize different types of data and create meaningful visualizations.
- 9.4.8.TL.1: Construct a spreadsheet in order to analyze multiple data sets, identify relationships, and facilitate data-based decision-making
- 9.4.8.TL.3: Select appropriate tools to organize and present information digitally.

Career Ready Practices

- CRP1. Act as a responsible and contributing citizen and employee.
- CRP2. Apply appropriate academic and technical skills.
- CRP4. Communicate clearly and effectively and with reason.
- CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
- CRP12. Work productively in teams while using cultural global competence.

