5 Science Unit 4: Chemical Reactions & Properties of Matter (Chemical Magic)

Content Area: Course(s): Time Period: Length: Status:

Science Marking Period 4 9 Weeks Published

Unit Overview

In this unit, students investigate the properties of matter by dissolving everyday chemicals to make solutions and by exploring simple yet surprising chemical reactions. Through these investigations, students begin to build conceptual models for the particulate nature of matter.

Standards Scientific & Engineering Practices

- Students plan and carry out an investigation to see which solution will turn a dull penny into a shiny penny. Students develop a conceptual model in order to construct an explanation for their test results. They revise their conceptual model as they develop a more sophisticated understanding of particles.
- Students carry out an investigation to determine what happens when they place a steel object in the same solution that turned their pennies shiny in Lesson 1. Students construct an explanation by developing a conceptual model to show how the solution affects the steel nail.
- Students conduct an investigation to discover if a reaction occurs when mixing two substances. Analyzing the data, students determine which substances react with acid. Next, students decide how to test unknown liquids to see if they are acids.
- Students conduct an investigation to see which chemicals, when combined, result in a chemical reaction. They construct an explanation to share which chemicals reacted and formed a new substance with a goo consistency. In Part 2 of the activity, students make their own goo by mixing the two chemicals which formed a goo-like substance in Part 1.
- Students conduct an investigation to see what happens when baking soda and vinegar react inside a closed ziploc bag. They develop a particle model to explain their results--that gas particles are created and move outward, causing the ziploc bag to expand or even burst.

Crosscutting Concepts

- Students observe the effect of solutions on a dull penny. Students explore that substances undergo change.
- This lesson lays the foundation for an understanding of conservation of matter by considering that the copper from the penny did not disappear, but only dissolved into the solution.
- Students consider the variety of scale within natural objects. They understand that there are extremely small, to small to see, copper particles dissolved in their solution.
- Students consider the cause and effect relationship when combining chemicals to produce reactions.
- Students consider that combining two chemicals may result in a change in the substance.
- Students consider the cause and effect relationship between chemicals that are combined to

form new substances.

- Students consider that combining two chemicals may result in a change when a substance with unique properties is created.
- Students consider that combining two chemicals may result in a change when a substance with unique properties is created.
- Students understand that particles are very small, to small to see, compared to other natural objects.

SCI.5-PS1-1	Develop a model to describe that matter is made of particles too small to be seen.
SCI.5-PS1-2	Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.
SCI.5-PS1-3	Make observations and measurements to identify materials based on their properties.
SCI.5-PS1-4	Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Materials

Core Materials:

- <u>Mystery Science</u>
 - \circ Are magic potions real?
 - Could you transform something worthless into gold?
 - What would happen if you drank a glass of acid?
 - What do fireworks, rubber, and Silly Putty have in common?
 - Why do some things explode?
- Teacher Created Labs

Supplemental Materials:

- <u>BrainPop resources</u>
- <u>NewsELA</u>
- <u>GRC Lessons</u>
- <u>TBSAID</u>
- <u>Nearpod Activities</u>

Technology

Technology Literacy

• 9.4.5.TL.1: Compare the common uses of at least two different digital tools and identify the advantages and disadvantages of using each.

• 9.4.5.TL.2: Sort and filter data in a spreadsheet to analyze findings.

• 9.4.5.TL.3: Format a document using a word processing application to enhance text, change page formatting, and include appropriate images graphics, or symbols.

Technology - Engineering Design

• 8.2.5.ED.1: Explain the functions of a system and its subsystems.

• 8.2.5.ED.2: Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.

• 8.2.5.ED.3: Follow step by step directions to assemble a product or solve a problem, using appropriate tools to accomplish the task.

Technology - Data & Analysis

• 8.1.5.DA.1: Collect, organize, and display data in order to highlight relationships or support a claim.

• 8.1.5.DA.2: Compare the amount of storage space required for different types of data.

• 8.1.5.DA.3: Organize and present collected data visually to communicate insights gained from different views of the data.

• 8.1.5.DA.4: Organize and present climate change data visually to highlight relationships or support a claim.

• 8.1.5.DA.5: Propose cause and effect relationships, predict outcomes, or communicate ideas using data.

Technology - Effects on the Natural World

• 8.2.5.ETW.2: Describe ways that various technologies are used to reduce improper use of resources.

• 8.2.5.ETW.3: Explain why human-designed systems, products, and environments need to be constantly monitored, maintained, and improved.

• 8.2.5.ETW.4: Explain the impact that resources, such as energy and materials used to develop technology, have on the environment.

• 8.2.5.ETW.5: Identify the impact of a specific technology on the environment and determine what can be done to increase positive effects and to reduce any negative effects, such as climate change.

Evidence of Learning/Assessment

Formative Assessment

- Teacher Observation
- Quizzes
- Exit Tickets
- Labs

Summative Assessment

- Benchmark Tests
- Alternative Assessments: Performance Tasks & Projects

Accommodations & Modifications

Special Education

Follow IEP Plan which may contain some of the following examples...

- In class/pull out support with special ed teacher
- Additional time during intervention time
- Preferred seating
- Questions read aloud
- Extended time for completing tasks
- Graphic organizers
- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Study Guides
- Limit number of questions
- Scribe
- Newsela leveled reading passages

504

Follow 504 Plan which may contain some of the following examples...

- In class/pull out support with special ed teacher
- Additional time during intervention time
- Preferred seating
- Questions read aloud
- Extended time for completing tasks
- Graphic organizers
- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Study Guides
- Limit number of questions
- Scribe
- Newsela leveled reading passages

ELL

- Translation device/dictionary
- In class/pull out support with ESL teacher
- In class/pull out support with special ed teacher
- Additional time during intervention time
- Preferred seating
- Questions read aloud
- Extended time for completing tasks
- Graphic organizers

- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Study Guides
- Limit number of questions
- Scribe
- Newsela leveled reading passages

At-risk of Failure

- Extra time during intervention
- In class/pull out support with special ed teacher
- Additional time during intervention time
- Preferred seating
- Questions read aloud
- Extended time for completing tasks
- Graphic organizers
- Vocabulary support
- Mnemonic devices
- Songs/videos to reinforce concepts
- Study Guides
- Limit number of questions
- Scribe
- Newsela leveled reading passage

Gifted & Talented

- Independent projects
- STEM Projects
- Leveled Reading with Newsela

Interdisciplinary Connections Connections to NJSLS - English Language Arts

• RI.3.2 Determine the main idea of a text; recount the key details and explain how they support the main idea. (3-LS3-1), (3-LS3-2)

• RI.3.3 Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-LS3-1), (3-LS3-2)

• W.3.2 Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (3-LS3-1), (3-LS3-2) • SL.3.4 Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-LS3-1), (3-LS3-2)

• RI.3.7 Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g., where, when, why, and how key events occur). (3-LS1-1)

• SL.3.5 Create engaging audio recordings of stories or poems that demonstrate fluid reading at an understandable pace; add visual displays when appropriate to emphasize or enhance certain facts or details. (3-LS1-1)

Connections to NJSLS - Mathematics

- MP.2 Reason abstractly and quantitatively. (3-LS3-1), (3-LS3-2)
- MP.4 Model with mathematics. (3-LS3-1), (3-LS3-2)

• 3.MD.B.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters. (3-LS3-1), (3-LS3-2)

- 3.NBT Number and Operations in Base Ten (3-LS1-1)
- 3.NF Number and Operations-Fractions (3-LS1-1)

Career Readiness, Life Literacies, and Key Skills Critical Thinking and Problem Solving:

• 9.4.5.CT.1: Identify and gather relevant data that will aid in the problem-solving process (e.g., 2.1.5.EH.4, 4-ESS3-1, 6.3.5.CivicsPD.2).

• 9.4.5.CT.2: Identify a problem and list the types of individuals and resources (e.g., school, community agencies, governmental, online) that can aid in solving the problem (e.g., 2.1.5.CHSS.1, 4-ESS3-1).

• 9.4.5.CT.3: Describe how digital tools and technology may be used to solve problems. • 9.4.5.CT.4: Apply critical thinking and problem-solving strategies to different types of problems such as personal, academic, community and global

Career Ready Practices

- CRP6. Demonstrate creativity and innovation.
- CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.