Unit 4: The Mathematics of Networking

Content Area: N

Math

Course(s): **Discrete Mathematics**

Time Period: Length:

35-40 Days/Grades 11-12

Status: **Published**

Title Section

Department of Curriculum and Instruction

Belleville Public Schools

Curriculum Guide

DISCRETE MATHEMATICS & STATISTICS, GRADES 11/12

THE MATHEMATICS OF NETWORKING

Belleville Board of Education

102 Passaic Avenue

Belleville, NJ 07109

Prepared by: Brian Sapinski, Mathematics Teacher

Dr. Richard Tomko, Ph.D., M.J., Superintendent of Schools

Ms. LucyAnn Demikoff, Director of Curriculum and Instruction K-12

Ms. Nicole Shanklin, Director of Elementary Education K-8, ESL Coordinator K-12

Mr. George Droste, Director of Secondary Education

Board Approved: September 23, 2019

Unit Overview

In this unit, students will learn mathematical applications that demonstrate how to manage a specific resource, such as time or energy, in the most efficient manner possible.

These applications include:

- How to sweep over a network with the least amount of backtracking
- How to find the shortest or least expensive route that visits a specific set of locations in a network
- How to create an efficient network that effectively connects people or things

Enduring Understanding

IN THIS UNIT, STUDENTS WILL UNDERSTAND:

- There are visual and applied differences between paths and circuits.
- Networks can be used to promote efficiency and construct optimal solutions.
- Efficiency within a network or graph can focus on either its vertices or its edges according a given situation.

Essential Questions

IN THIS UNIT, WE WILL ASK:

- Why is it useful to represent real-life situations mathematically?
- What real-world events can be modeled using Euler and Hamiltonian paths and circuits?
- How can networks be used to answer real-world problems in the most effective manner?
- Why can any planar map be colored in four colors?

Exit Skills

BY THE END OF THIS UNIT, THE STUDENT SHOULD BE ABLE TO:

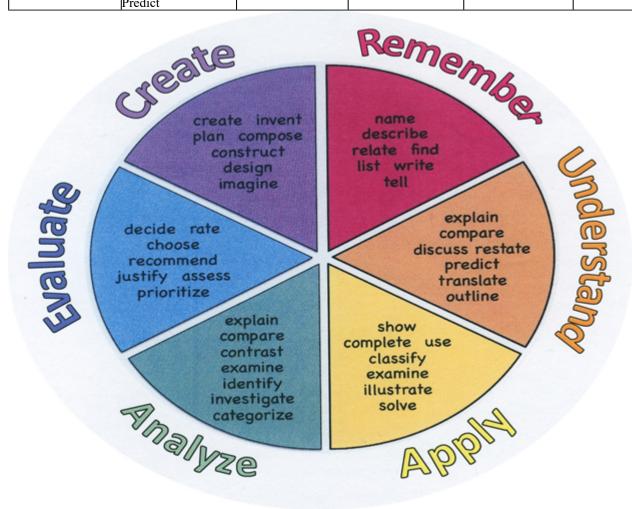
- Construct networks and recognize that they are useful tools in modeling real-life situations
- Find Euler paths and circuits, and solve problems involving them using appropriate algorithms
- Find Hamiltonian paths and circuits
- Use appropriate algorithms to differentiate between Euler and Hamiltonian paths and circuits
- Create, identify and optimally solve Traveling Salesman and Shortest Route Problems using appropriate algorithms
- Determine the optimal solution for connecting a network by a minimum spanning tree
- Use graph coloring to solve conflicts

New Jersey Student Learning Standards (NJSLS-S)

MA.K-12.1	Make sense of problems and persevere in solving them.
MA.K-12.2	Reason abstractly and quantitatively.
MA.F-IF.A.2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
MA.K-12.3	Construct viable arguments and critique the reasoning of others.
MA.K-12.4	Model with mathematics.
MA.K-12.5	Use appropriate tools strategically.
MA.K-12.6	Attend to precision.
MA.K-12.7	Look for and make use of structure.
MA.A-CED.A.1	Create equations and inequalities in one variable and use them to solve problems.

Interdisciplinary Connections

LA.RST.11-12.3	Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
LA.RST.9-10.5	Analyze the relationships among concepts in a text, including relationships among key terms (e.g., force, friction, reaction force, energy).
9.3.12.BM.1	Utilize mathematical concepts, skills and problem solving to obtain necessary information for decision-making in business.
9-12.HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
9-12.HS-ETS1-4.5.1	Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems.


Learning Objectives

- Develop a network diagram that models a real-life situation
- Interpret key terms related to networks (vertices, edges, degree, loop, bridge)
- Test algorithms that can identify the existence of an Euler path or circuit, then outline it
- Reconstruct networks to semi-Eulerize or Eulerize them
- Diagram Hamiltonian paths and circuits in a network
- Diagram the shortest Hamiltonian circuit in a network by testing an algorithm (Brute Force, Nearest Neighbor, Repetitive Nearest Neighbor, Cheapest Link)
- Diagram minimum spanning trees within a network
- Design a map coloring within a network to solve real-life conflicts

Action Verbs: Below are examples of action verbs associated with each level of the Revised Bloom's Taxonomy.

Remember	Understand	Apply	Analyze	Evaluate	Create
Choose	Classify	Choose	Categorize	Appraise	Combine
Describe	Defend	Dramatize	Classify	Judge	Compose
Define	Demonstrate	Explain	Compare	Criticize	Construct
Label	Distinguish	Generalize	Differentiate	Defend	Design
List	Explain	Judge	Distinguish	Compare	Develop
Locate	Express	Organize	Identify	Assess	Formulate
Match	Extend	Paint	Infer	Conclude	Hypothesize
Memorize	Give Examples	Prepare	Point out	Contrast	Invent
Name	Illustrate	Produce	Select	1	Make
Omit	Indicate	Select	Subdivide	Determine	Originate
Recite	Interrelate	Show	Survey	Grade	Organize
Select	Interpret	Sketch	Arrange	Justify	Plan
State	Infer	Solve	Breakdown	Measure	Produce
Count	Match	Use	Combine	Rank	Role Play
Draw	Paraphrase	Add	Detect	Rate	Drive
Outline	Represent	Calculate	Diagram	Support	Devise
Point	Restate	Change	Discriminate	Test	Generate
Quote	Rewrite	Classify	Illustrate		Integrate
Recall	Select	Complete	Outline		Prescribe
Recognize	Show	Compute	Point out		Propose

Repeat	Summarize	Discover	Separate	Reconstruct
Reproduce	Tell	Divide		Revise
	Translate	Examine		Rewrite
	Associate	Graph		Transform
	Compute	Interpolate		
	Convert	Manipulate		
	Discuss	Modify		
	Estimate	Operate		
	Extrapolate	Subtract		
	Generalize			
	Predict			

Suggested Activities & Best Practices

STUDENTS WILL REACH OBJECTIVES AND ACQUIRE SKILLS & UNDERSTANDING THROUGH:

- Examination and performance on problems selected from the texts
- Student groups with assigned specific roles that can assist each other in overall understanding
- Exit tickets to offer additional summary of key concepts, level of understanding and additional questions

• Project-based learning for students to construct networks, paths and circuits using geographic elements

Assessment Evidence - Checking for Understanding (CFU)

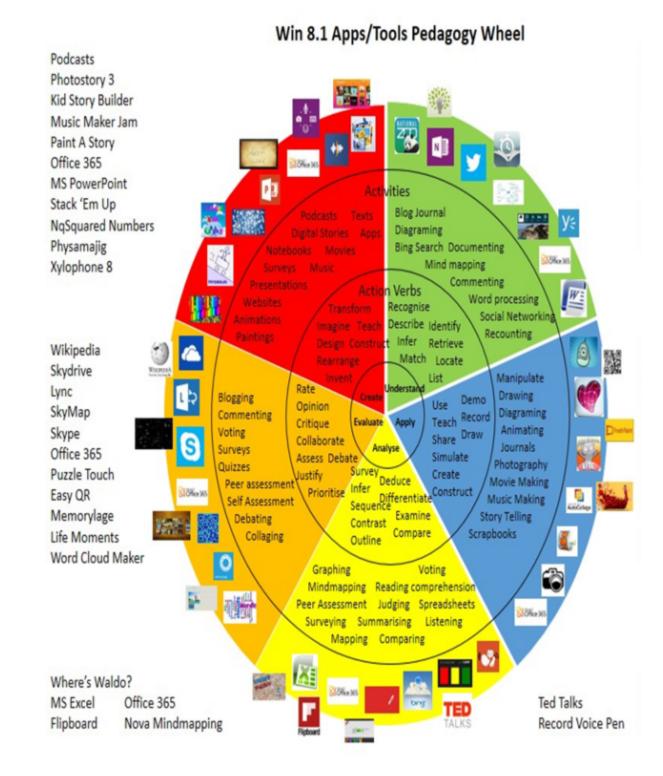
SPECIFIC SAMPLES INCLUDE:

- Exit tickets at the close of each lesson will address definitions, concepts and formulas (EX: Recognize when certain networks are capable of having Euler paths/circuits with additional connections) (Formative)
- Demonstrating a proper comparison of algorithms for the same Traveling Salesman Problem (Formative)
- Chapter Test/Quiz (Summative)
- Common Quarterly/Benchmark Exams Quarter 3 Exam for this unit (Benchmark)
- Web-Based Assessments (using Google Forms, ALEKS, Edulastic, Khan Academy, etc.) (Formative/Summative)
- Admit Tickets
- Common Benchmarks
- Compare & Contrast
- Define
- Describe
- Evaluate
- Evaluation rubrics
- Exit Tickets
- Explaining
- Illustration
- Quizzes
- Self- assessments
- Study Guide
- Surveys
- Teacher Observation Checklist
- Think, Pair, Share
- Think, Write, Pair, Share
- Unit review/Test prep
- Unit tests
- Web-Based Assessments

Primary Resources & Materials

- Excursions in Modern Mathematics 9th edition textbook (Frank Tannenbaum)
- Excursions in Modern Mathematics 6th edition textbook (Frank Tannenbaum)

Ancillary Resources


Sample web pages based on material are included here. This list will be edited as more reference material is found.

- https://www.wsfcs.k12.nc.us/cms/lib/NC01001395/Centricity/Domain/390/Notes%205.1-5.3.pdf
- https://sites.math.washington.edu/~stgriff/381notes.pdf
- https://slideplayer.com/slide/7805935/

Technology Infusion

GOOGLE SHEETS: Students will use Google Sheets within their Chromebooks for the tasks described:

• TRAVELING SALESMAN PROBLEM: Construction of tables for determining shortest Hamiltonian routes by various algorithms

Alignment to 21st Century Skills & Technology

- English Language Arts;
- Mathematics;
- Science and Scientific Inquiry (Next Generation);
- Social Studies, including American History, World History, Geography, Government and Civics, and Economics;
- Technology

CRP.K-12.CRP4	Communicate clearly and effectively and with reason.
CRP.K-12.CRP6	Demonstrate creativity and innovation.
CRP.K-12.CRP8	Utilize critical thinking to make sense of problems and persevere in solving them.
CRP.K-12.CRP9	Model integrity, ethical leadership and effective management.
CRP.K-12.CRP11	Use technology to enhance productivity.
CAEP.9.2.12.C.1	Review career goals and determine steps necessary for attainment.
TECH.8.1.12.E.CS4	Process data and report results.
TECH.8.1.12.F.CS1	Identify and define authentic problems and significant questions for investigation.
TECH.8.1.12.F.CS2	Plan and manage activities to develop a solution or complete a project.
TECH.8.1.12.F.CS3	Collect and analyze data to identify solutions and/or make informed decisions.
TECH.8.1.12.F.CS4	Use multiple processes and diverse perspectives to explore alternative solutions.

21st Century Skills/Interdisciplinary Themes

- · Communication and Collaboration
- · Creativity and Innovation
- Critical thinking and Problem Solving
- ICT (Information, Communications and Technology) Literacy
- Life and Career Skills

21st Century Skills

- Civic Literacy
- Financial, Economic, Business and Entrepreneurial Literacy
- Global Awareness

Differentiation

SPECIFIC EXAMPLES INCLUDE:

- Small task-oriented groups where each member is responsible for identifying key routes, tallying, etc. within a Traveling Salesman problem
- Maniluatives: Colored index cards for students to lay out map coloring based on seating position

• Study guides provided prior to quizzes and tests

Differentiations:

- Small group instruction
- Small group assignments
- Extra time to complete assignments
- Pairing oral instruction with visuals
- Repeat directions
- Use manipulatives
- Study guides
- Rephrase written directions
- Additional time
- Preview vocabulary
- Preview content & concepts
- Highlight text
- Student(s) work with assigned partner
- Visual presentation
- Assistive technology
- Small group setting

Hi-Prep Differentiations:

- Alternative formative and summative assessments
- Games and tournaments
- Group investigations
- Independent research and projects
- Interest groups
- Project-based learning
- Problem-based learning
- Tiered activities/assignments
- Varying organizers for instructions

Lo-Prep Differentiations:

- · Exploration by interest
- Flexible grouping
- Goal setting with students
- Mini workshops to re-teach or extend skills
- Open-ended activities
- Think-Pair-Share
- Varied supplemental materials

Special Education Learning (IEP's & 504's)

SPECIFIC EXAMPLES INCLUDE:

• Note cards for instructions for applying Hamilonian algorithms (Brute Force, Nearest Neighbor)

- One-on-one oral questioning during testing to elicit responses
- printed copy of board work/notes provided
- additional time for skill mastery
- assistive technology
- behavior management plan
- Center-Based Instruction
- · check work frequently for understanding
- computer or electronic device utilizes
- extended time on tests/ guizzes
- · have student repeat directions to check for understanding
- highlighted text visual presentation
- modified assignment format
- modified test content
- modified test format
- modified test length
- · multi-sensory presentation
- multiple test sessions
- preferential seating
- preview of content, concepts, and vocabulary
- Provide modifications as dictated in the student's IEP/504 plan
- reduced/shortened reading assignments
- Reduced/shortened written assignments
- secure attention before giving instruction/directions
- shortened assignments
- student working with an assigned partner
- · teacher initiated weekly assignment sheet
- Use open book, study guides, test prototypes

English Language Learning (ELL)

SPECIFIC EXAMPLES INCLUDE:

- Translated material
- Peer partners for assignments and tests with students that can translate material and meanings of concepts verbally
- teaching key aspects of a topic. Eliminate nonessential information
- · using videos, illustrations, pictures, and drawings to explain or clarif
- allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning;
- allowing students to correct errors (looking for understanding)

- allowing the use of note cards or open-book during testing
- decreasing the amount of workpresented or required
- having peers take notes or providing a copy of the teacher's notes
- modifying tests to reflect selected objectives
- · providing study guides
- reducing or omitting lengthy outside reading assignments
- · reducing the number of answer choices on a multiple choice test
- tutoring by peers
- using computer word processing spell check and grammar check features
- using true/false, matching, or fill in the blank tests in lieu of essay tests

At Risk

SPECIFIC EXAMPLES INCLUDE:

- Printed or video copy of material missed during excessive absences
- Corrections of incorrect work from tests
- Rewriting of test questions to include options for network connection steps for student to execute within the work on freeresponse test questions
- allowing students to correct errors (looking for understanding)
- teaching key aspects of a topic. Eliminate nonessential information
- allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning
- · allowing students to select from given choices
- allowing the use of note cards or open-book during testing
- collaborating (general education teacher and specialist) to modify vocabulary, omit or modify items to reflect objectives for the student, eliminate sections of the test, and determine how the grade will be determined prior to giving the test.
- decreasing the amount of workpresented or required
- having peers take notes or providing a copy of the teacher's notes
- marking students' correct and acceptable work, not the mistakes
- modifying tests to reflect selected objectives
- providing study guides
- reducing or omitting lengthy outside reading assignments
- reducing the number of answer choices on a multiple choice test
- tutoring by peers
- using authentic assessments with real-life problem-solving
- using true/false, matching, or fill in the blank tests in lieu of essay tests
- using videos, illustrations, pictures, and drawings to explain or clarify

Talented and Gifted Learning (T&G)

SPECIFIC EXAMPLES INCLUDE:

- Complete "Running"-level problems in textbook containing higher-level thinking
- Student can construct original examples that can demonstrate full mastery of specific concepts and objectives
- Provide students with resources to allow them to move forward at a faster pace when they display faster mastery of learning objectives
- Above grade level placement option for qualified students
- · Advanced problem-solving
- Allow students to work at a faster pace
- Complete activities aligned with above grade level text using Benchmark results
- Create a plan to solve an issue presented in the class or in a text
- Higher order, critical & creative thinking skills, and discovery
- Multi-disciplinary unit and/or project
- Teacher-selected instructional strategies that are focused to provide challenge, engagement, and growth opportunities
- Utilize exploratory connections to higher-grade concepts
- Utilize project-based learning for greater depth of knowledge

Sample Lesson	
Using the template below, please develop a Sample Lesson for the first unit only.	
Unit Name:	

NJSLS:
Interdisciplinary Connection:
Statement of Objective:
Anticipatory Set/Do Now:
Learning Activity:
Student Assessment/CFU's:
Materials:
21st Century Themes and Skills:
Differentiation/Modifications:

Integration of Technology: