Unit 1: Engineering and Technology (Engineering Design)

Content Area:	Science
Course(s):	Science Gr
Time Period:	October
Length:	24 Days
Status:	Published

4

Title Section

Department of Curriculum and Instruction

Belleville Public Schools

Curriculum Guide

Science: Grade 4

Unit 1: Engineering and Technology

Belleville Board of Education

102 Passaic Avenue

Belleville, NJ 07109

Prepared by: Ms. Deborah Siipola

Dr. Richard Tomko, Ph.D., M.J., Superintendent of Schools

Ms. LucyAnn Demikoff, Director of Curriculum and Instruction K-12

Ms. Nicole Shanklin, Director of Elementary Education

Mr. George Droste, Director of Secondary Education

Board Approved: September 23, 2019

Unit Overview

Unit one provides detailed information about engineering and technology. The content within the unit focuses on exploring how engineers define problems and solutions. The unit explains the importance of prototypes. Models are used to examine how prototypes are tested and improved.

Enduring Understanding

- Technology is how humans change the natural world to meet a want or a need.
- Engineering is the process of designing new or improved technology.
- Engineers are the people who do engineering.
- Before designing a solution, it is important to learn more about the problem.
- Researching and planning can assist in designing a solution for a problem.
- Prototypes are simple models which allow you to test ideas.
- Prototypes must be thoroughly tested to be sure they're safe and working correctly.
- Engineering solutions need to be tested and improved many times before they meet criteria and satisfy constraints of safety, time, money, or materials.
- Collaboration and communication can lead to improving prototypes.

Essential Questions

- What is a design problem?
- How can you identify constraints and criteria for a design solution?
- How do engineers define problems?
- How do engineers design solutions?
- How do engineers test and improve prototypes?

• How can collaboration and communication lead to improving prototypes?

Exit Skills

By the end of Grade 4, Science Unit 1, the student should be able to:

- Ask questions and define problems
- Construct explanations and design solutions
- Define and delimit engineering problems
- Develop possible solutions
- Optimize the design solution
- Analyze the influence of science, engineering, and technology on society and the natural world

New Jersey Student Learning Standards (NJSLS-S) & NGSS

- SEP Planning and Carrying Out Investigations
- SEP Constructing Explanations and Designing Solutions
- SEP Asking Questions and Defining Problems
- DCI Defining and Delimiting Engineering Solutions
- DCI Developing Possible Solutions
- DCI Optimizing the Design Solution
- CCC Influence of Science, Engineering, and Technology on Society and the Natural World

NextGen Science Standards

4-ESS3-2.2	Cause and effect: Mechanism and explanation.
4-ESS3-2.2.1	students routinely identify and test causal relationships and use these relationships to explain change. They understand events that occur together with regularity might or might not signify a cause and effect relationship.
4-ESS3-2.ETS1.B	Designing Solutions to Engineering Problems
4-ESS3-2.ETS1.B.1	Testing a solution involves investigating how well it performs under a range of likely conditions.
4-PS3-4.ETS1.A.1	Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the

basis of how well each one meets the specified criteria for success or how well each takes the constraints into account.

Interdisciplinary Connections

Do the Math! p. 40

MA.4.OA.A.3	Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
MA.4.OA.B.4	Find all factor pairs for a whole number in the range 1–100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1–100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1–100 is prime or composite.
MA.4.OA.C.5	Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself.

Learning Objectives

Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used.

In Unit 1, students will demonstrate the ability to:

HMH Science Dimensions, Unit 1 - Lesson 1:

- Explore engineering problems
- Develop solutions based on criteria and constraints
- Investigate problems and solutions to gain a deeper understanding of engineering and technology's impact on society

HMH Science Dimensions, Unit 1 - Lesson 2:

- **Determine** how engineers develop solutions to problems
- Integrate solutions and technology into society and the environment
- Design explanations and solutions to problems using a process which includes constraints and criteria

HMH Science Dimensions, Unit 1 - Lesson 3:

- Plan, design, and test possible solutions for a prototype to determine which design best solves a problem with the given criteria and constraints
- Develop changes to a design with failures in order to improve it
- Asses the effectiveness of communication in order to share observations, gain insight, and optimize future solutions and designs.

Below are examples of action verbs associated with each level of the Revised Bloom's Taxonomy. These are useful in writing learning objectives, assignment objectives and exam questions.

Remember	Understand	Apply	Analyze	Evaluate	Create
Choose	Classify	Choose	Categorize	Appraise	Combine
Describe	Defend	Dramatize	Classify	Judge	Compose
Define	Demonstrate	Explain	Compare	Criticize	Construct
Label	Distinguish	Generalize	Differentiate	Defend	Design
List	Explain	Judge	Distinguish	Compare	Develop
Locate	Express	Organize	Identify	Assess	Formulate
Match	Extend	Paint	Infer	Conclude	Hypothesize
Memorize	Give Examples	Prepare	Point out	Contrast	Invent
Name	Illustrate	Produce	Select	Critique	Make
Omit	Indicate	Select	Subdivide	Determine	Originate
Recite	Interrelate	Show	Survey	Grade	Organize
Select	Interpret	Sketch	Arrange	Justify	Plan
State	Infer	Solve	Breakdown	Measure	Produce
Count	Match	Use	Combine	Rank	Role Play
Draw	Paraphrase	Add	Detect	Rate	Drive
Outline	Represent	Calculate	Diagram	Support	Devise
Point	Restate	Change	Discriminate	Test	Generate
Quote	Rewrite	Classify	Illustrate		Integrate
Recall	Select	Complete	Outline		Prescribe
Recognize	Show	Compute	Point out		Propose
Repeat	Summarize	Discover	Separate		Reconstruct
Reproduce	Tell	Divide	-		Revise
	Translate	Examine			Rewrite
	Associate	Graph			Transform
	Compute	Interpolate			
	Convert	Manipulate			
	Discuss	Modify			
	Estimate	Operate			
	Extrapolate	Subtract			
	Generalize				
	Predict				

Action Verbs: Below are examples of action verbs associated with each level of the Revised Bloom's Taxonomy.

Suggested Activities & Best Practices

HMH Science Dimensions, Unit 1 - Lesson 1:

- Engage: "Can You Solve It?" lesson
- Explore/Explain: "What Do You See?" and "Real-World Limits" lessons and hands-on activity (Exploration 1 & 2)
- Elaborate: "Discover More" extension activity
- Evaluate: "Lesson Check" and "Lesson Roundup" assessments (formative/summative)

HMH Science Dimensions, Unit 1 - Lesson 2:

- Engage: "Can You Solve It?" lesson
- Explore/Explain: "Research Matters," "Past Hearing Helpers," and " Passing the Test" lessons and hands-on activity (Exploration 1, 2, & 3)

- Elaborate: "Discover More" extension activity
- Evaluate: "Lesson Check" and "Lesson Roundup" assessments (formative/summative)

HMH Science Dimensions, Unit 1 - Lesson 3:

- Engage: "Can You Solve It?" lesson and hands-on activity
- Explore/Explain: "Things Fail and Improve" and "Getting Better," lessons and hands-on activity (Exploration 1, 2, & 3)
- Elaborate: "Discover More" extension activity
- Evaluate: "Lesson Check" and "Lesson Roundup" assessments (formative/summative)

HMH Science Dimensions, Unit 1 - Performance Task (Design a Portable Chair):

- State Goal
- Research
- Brainstorm
- Plan
- Visualize
- Evaluate and Redesign
- Communicate

HMH Science Dimensions, Unit 1 - Unit Project (Extend a Sense):

- Research and Plan
- Analyze Results
- Claims, Evidence, and Reasoning

Assessment Evidence - Checking for Understanding (CFU)

- Admit Tickets
- Compare & Contrast

- Create a Multimedia Poster
- DBQ's
- Define
- Describe
- Evaluate
- Evaluation rubrics
- Exit Tickets
- Explaining
- Fist- to-Five or Thumb-Ometer
- HMH End-of-Year Test (Benchmark)
- HMH Mid-Year Test (Benchmark)
- HMH Performance-based Assessment (Alternative)
- Illustration
- Journals
- KWL Chart
- Learning Center Activities
- Multimedia Reports
- Outline
- Question Stems
- Quickwrite
- Quizzes (Formative)
- Red Light, Green Light
- Self- assessments
- Study Guide
- Surveys
- Teacher Observation Checklist
- Think, Pair, Share
- Think, Write, Pair, Share
- Unit review/Test prep
- Unit tests (Summative)
- Web-Based Assessments
- Written Reports

Primary Resources & Materials

HMH Science Dimensions: Teacher Edition, Student workbooks, online resources

HMH Equipment & Safety Kits

HMH Science Dimensions S&E Leveled Readers

• On Level: What is the Engineering Process?

- Extra Support: What is the Engineering Process?
- Enrichment: City Water Tunnel 3

Ancillary Resources

Science Weekly, Scholastic News, NewsELA, YouTube/TeacherTube, National Geographics Kids, Science Channel

https://ngss-assessment.portal.concord.org/

Technology Infusion

Win 8.1 Apps/Tools Pedagogy Wheel

CRP.K-12.CRP1.1	Career-ready individuals understand the obligations and responsibilities of being a member of a community, and they demonstrate this understanding every day through their interactions with others. They are conscientious of the impacts of their decisions on others and the environment around them. They think about the near-term and long-term consequences of their actions and seek to act in ways that contribute to the betterment of their teams, families, community and workplace. They are reliable and consistent in going beyond the minimum expectation and in participating in activities that serve the greater good.
CRP.K-12.CRP4.1	Career-ready individuals communicate thoughts, ideas, and action plans with clarity, whether using written, verbal, and/or visual methods. They communicate in the workplace with clarity and purpose to make maximum use of their own and others' time. They are excellent writers; they master conventions, word choice, and organization, and use effective tone and presentation skills to articulate ideas. They are skilled at interacting with others; they are active listeners and speak clearly and with purpose. Career-ready individuals think about the audience for their communication and prepare accordingly to ensure the desired outcome.
CRP.K-12.CRP5.1	Career-ready individuals understand the interrelated nature of their actions and regularly make decisions that positively impact and/or mitigate negative impact on other people, organization, and the environment. They are aware of and utilize new technologies, understandings, procedures, materials, and regulations affecting the nature of their work as it relates to the impact on the social condition, the environment and the profitability of the organization.
CRP.K-12.CRP6.1	Career-ready individuals regularly think of ideas that solve problems in new and different ways, and they contribute those ideas in a useful and productive manner to improve their organization. They can consider unconventional ideas and suggestions as solutions to issues, tasks or problems, and they discern which ideas and suggestions will add greatest value. They seek new methods, practices, and ideas from a variety of sources and seek to apply those ideas to their own workplace. They take action on their ideas and understand how to bring innovation to an organization.

21st Century Skills/Interdisciplinary Themes

- Communication and Collaboration
- Creativity and Innovation
- Critical thinking and Problem Solving
- ICT (Information, Communications and Technology) Literacy
- Information Literacy
- Life and Career Skills
- Media Literacy

21st Century Skills

- Civic Literacy
- Environmental Literacy
- Financial, Economic, Business and Entrepreneurial Literacy
- Global Awareness
- Health Literacy

Differentiation

Differentiations:

- Small group instruction
- Small group assignments
- Extra time to complete assignments
- Pairing oral instruction with visuals
- Repeat directions
- Use manipulatives
- Center-based instruction
- Token economy
- Study guides
- Teacher reads assessments allowed
- Scheduled breaks
- Rephrase written directions
- Multisensory approaches
- Additional time
- Preview vocabulary
- Preview content & concepts
- Story guides
- Behavior management plan
- Highlight text
- Student(s) work with assigned partner
- Visual presentation
- Assistive technology
- Auditory presentations
- Large print edition
- Dictation to scribe
- Small group setting

Hi-Prep Differentiations:

- Alternative formative and summative assessments
- Choice boards
- Games and tournaments
- Group investigations
- Guided Reading
- Independent research and projects
- Interest groups
- Learning contracts

- Leveled rubrics
- Literature circles
- Multiple intelligence options
- Multiple texts
- Personal agendas
- Project-based learning
- Problem-based learning
- Stations/centers
- Think-Tac-Toes
- Tiered activities/assignments
- Tiered products
- Varying organizers for instructions

Lo-Prep Differentiations

- Choice of books or activities
- Cubing activities
- Exploration by interest
- Flexible grouping
- Goal setting with students
- Jigsaw
- Mini workshops to re-teach or extend skills
- Open-ended activities
- Think-Pair-Share
- Reading buddies
- Varied journal prompts
- Varied supplemental materials

Special Education Learning (IEP's & 504's)

- printed copy of board work/notes provided
- additional time for skill mastery
- assistive technology
- behavior management plan
- Center-Based Instruction
- check work frequently for understanding
- computer or electronic device utilizes
- extended time on tests/ quizzes
- have student repeat directions to check for understanding
- highlighted text visual presentation
- modified assignment format

- modified test content
- modified test format
- modified test length
- multi-sensory presentation
- multiple test sessions
- preferential seating
- preview of content, concepts, and vocabulary
- Provide modifications as dictated in the student's IEP/504 plan
- reduced/shortened reading assignments
- Reduced/shortened written assignments
- secure attention before giving instruction/directions
- shortened assignments
- student working with an assigned partner
- teacher initiated weekly assignment sheet
- Use open book, study guides, test prototypes

English Language Learning (ELL)

- · teaching key aspects of a topic. Eliminate nonessential information
- using videos, illustrations, pictures, and drawings to explain or clarif
- allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning;
- allowing students to correct errors (looking for understanding)
- allowing the use of note cards or open-book during testing
- · decreasing the amount of workpresented or required
- having peers take notes or providing a copy of the teacher's notes
- modifying tests to reflect selected objectives
- providing study guides
- reducing or omitting lengthy outside reading assignments
- reducing the number of answer choices on a multiple choice test
- tutoring by peers
- using computer word processing spell check and grammar check features
- using true/false, matching, or fill in the blank tests in lieu of essay tests

At Risk

- allowing students to correct errors (looking for understanding)
- teaching key aspects of a topic. Eliminate nonessential information
- allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning

- allowing students to select from given choices
- allowing the use of note cards or open-book during testing

• collaborating (general education teacher and specialist) to modify vocabulary, omit or modify items to reflect objectives for the student, eliminate sections of the test, and determine how the grade will be determined prior to giving the test.

- · decreasing the amount of workpresented or required
- having peers take notes or providing a copy of the teacher's notes
- marking students' correct and acceptable work, not the mistakes
- · modifying tests to reflect selected objectives
- providing study guides
- reducing or omitting lengthy outside reading assignments
- reducing the number of answer choices on a multiple choice test
- tutoring by peers
- using authentic assessments with real-life problem-solving
- using true/false, matching, or fill in the blank tests in lieu of essay tests
- using videos, illustrations, pictures, and drawings to explain or clarify

Talented and Gifted Learning (T&G)

- Above grade level placement option for qualified students
- Advanced problem-solving
- Allow students to work at a faster pace
- Cluster grouping
- Complete activities aligned with above grade level text using Benchmark results
- Create a blog or social media page about their unit
- Create a plan to solve an issue presented in the class or in a text
- Debate issues with research to support arguments
- Flexible skill grouping within a class or across grade level for rigor
- Higher order, critical & creative thinking skills, and discovery
- Multi-disciplinary unit and/or project
- Teacher-selected instructional strategies that are focused to provide challenge, engagement, and growth opportunities
- Utilize exploratory connections to higher-grade concepts
- Utilize project-based learning for greater depth of knowledge

Sample Lesson

NJSLS:

Interdisciplinary Connection: Math

Statement of Objective: SWBAT design and construct a chair that can hold a stuffed animal using specific supplies.

Anticipatory Set/Do Now: Discussion and video of what engineers do. How and why are everyday items constructed and designed?

Learning Activity: Students will work in small groups using designated supplies to construct a chair that can hold a stuffed animal.

Student Assessment/CFU's: Final product - animal chair

Materials: copy paper/one roll of masking tape/ small to medium sized stuffed animal

21st Century Themes and Skills: Career awareness / Exploration and Preparation

Differentiation/Modifications: Extended time

Integration of Technology: you tube video of engineers solving problems