ROBOTC Natural Language - VEX Cortex Reference:

Setup Functions:

Robot Type
Choose which robot you want to write a program for. Note that not including this command defaults to
"robotType (none) ;" Also please note that this command should be the first thing in your "task main()".

Command:

robotType (type) ;

Parameters: type

Valid Robot Types for type:

none - this will not set up any motors and sensors for you (this is the default.)
recbot - sets the motors and sensors to match a default Recbot.
swervebot - sets the motors and sensors to match a default Swervebot.

Usage without Parameters:

This snippet of code will set the robot type to none by

robotType () ; default, skipping the setup process. You must manually set
the motors and sensors in the '"Motors and Sensors Setup'

Usage with Parameters: menu.

robotType (recbot) ; This snippet of code will set the robot type to recbot. This

will automatically set up the motor and sensor ports to
match those of a default Recbot.

Movement Functions:

Set Servo
Set a servo to a desired position.

Command:

setServo (servo, position) ;

Parameters: servo, position

Acceptable Motors for servo:
MOTOR ports 2 through 9 (and your names for them given in Motors and Sensors Setup.)

Valid Range Values for position:
-127 10 127.
Usage without Parameters:

This snippet of code will set the servo on motor-port 6 to
position O (center). The default motor-port is port6é and
the default position is 0 for setServo ().

setServo () ;

Usage with Parameters:

This snippet of code will set the servo on motor-port 8 to

s 8, 37); i
setServo (port) position 37.

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference © 1

ROBOTC Natural Language - VEX Cortex Reference:

Start Motor
Set a motor to a speed.

Command:

startMotor (motor, speed) ;

Parameters: motor, speed

Acceptable Motors for motor:
MOTOR ports 1 through 10 (and your names for them given in Motors and Sensors Setup.)

Valid Range Values for speed:
-127 (reverse) to 127 (forward) where O is stop.

Usage without Parameters:

This snippet of code will run the motor in motor-port 6 at
speed 95 for 1.0 seconds and then stop it. The default
motor-port is port6 and the default speed is 95 for
startMotor ().

startMotor () ;
wait() ;
stopMotor () ;

Usage with Parameters:

This snippet of code will run the motor in motor-port 8 at

startMotor (port8, -32); speed -32 for 0.5 seconds and then stop it.

wait(0.5);
stopMotor (port8) ;

Stop Motor
Stops a motor.

Sl

Command:

stopMotor (motor) ;

Parameters: motor

Acceptable Motors for motor:
MOTOR ports 1 through 10 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the motor in motor-port 6 at
speed 95 for 1.0 seconds and then stop it. The default
motor-port is porté for stopMotor ().

startMotor () ;
wait() ;
stopMotor () ;

Usage with Parameters:

This snippet of code will run the motor in motor-port 8 at

startMotor (port8, -32); speed -32 for 0.5 seconds and then stop it.

wait(0.5) ;
stopMotor (port8) ;

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference © 2

ROBOTC Natural Language - VEX Cortex Reference:

Wait Functions:

Wait
Wait an amount of time measured in seconds. The robot continues to do what it was doing during this time.

Command:

wait (time) ;

Parameters: time

Valid Range Values for time:
0.0 to 3600.0 and up.

Usage without Parameters:

This snippet of code will run the robot forward for 1.0
seconds and then stop. The default time is 1.0 (seconds)
for wait ().

forward() ;
wait() ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward(63) ; speed for 2.73 seconds and then stop.

wait(2.73);
stop () ;

Wait in Milliseconds
Wait an amount of time in milliseconds. The robot continues to do what it was doing during this time.

Command:

waitInMilliseconds (time) ;

Parameters: time
Valid Range Values for time:
0 to 3600000 and up.

Usage without Parameters:

This snippet of code will run the robot forward for 1000
milliseconds (1.0 seconds) and then stop. The default time
is 1000 (milliseconds) for waitInMilliseconds ().

forward() ;
waitInMilliseconds () ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward(63); speed for 2730 milliseconds (2.73 seconds) and then stop.

waitInMilliseconds (2730) ;
stop () ;

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 3

ROBOTC Natural Language - VEX Cortex Reference:

Robot Movement Functions:
Note that for desirable results with the following set of functions, you must use the "robotType () ;" Setup Function with either recbot or
swervebot in the beginning of your "task main()".

Forward
Both wheels rotate forward at the same speed, causing the robot to move forward.

Command:

forward (speed) ;

Parameters: speed

Valid Range Values for speed:
0 to 127 (however forward () will always move your robot forward.)

Usage without Parameters:

This snippet of code will run the robot forward for 1.0
seconds and then stop. The default speed is 95 for
forward().

forward() ;
wait() ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward(63) ; speed for 2.0 seconds and then stop.

wait(2.0);
stop() ;

Backward
Both wheels rotate backward at the same speed, causing the robot to move backward.

Command:

backward (speed) ;

Parameters: speed

Valid Range Values for speed:
-127 to O (however backward () will always move your robot backward.)

Usage without Parameters:

This snippet of code will run the robot backward for 1.0

bac.:l:waJ.:d() ’ seconds and then stop. The default speed is -95 for
. backward ().
stop() ;

Usage with Parameters:

This snippet of code will run the robot backward at half

backward (-63) ; speed for 2.0 seconds and then stop.

wait(2.0);
stop() ;

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 4

ROBOTC Natural Language - VEX Cortex Reference:

Point Turn
Both wheels rotate at the same speed but in opposite directions, causing the robot to turn in place.

Command:

pointTurn (direction, speed) ;

Parameters: direction, speed

Valid Directions for direction:
left and right.

Valid Range Values for speed:
-127 t0 127.

Usage without Parameters:

.) This snippet of code will make the robot turn right in place
pointTurn () ; at speed 95 for 1.0 seconds and then stop. The default

wait(); direction and speed are right and 95 for pointTurn().
stop() ;

Usage with Parameters:

This snippet of code will make the robot turn left in place

intT lef ;
pointTurn (left, 63) at half speed for 0.4 seconds.

wait(0.4);
stop () ;

Swing Turn
One wheel rotates while the other does not move, causing the robot to make a wide turn around the stopped wheel.

Command:

swingTurn (direction, speed) ;

Parameters: direction, speed

Valid Directions for direction:
left and right.

Valid Range Values for speed:
-127 10 127.

Usage without Parameters:

This snippet of code will make the robot make a wide
i right turn at speed 95 for 1.0 seconds and then stop.
wait(); The default direction and speed are right and 95 for
S f swingTurn().

swingTurn () ;

Usage with Parameters:

This snippet of code will make the robot make a wide left

swingTurn(left, 63); turn at half speed for 0.75 seconds.

wait (0.75) ;
stop () ;

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 5

ROBOTC Natural Language - VEX Cortex Reference:

Stop
Both wheels do not move, causing the robot to stop.

Command:

stop () ;

Parameters: N/A

Usage without Parameters:

‘ a0 - This snippet of code will run the robot forward for
orward() ; 1.0 seconds and then stop. (Note that there are no

:iz; 8 : parameters for stop ().

Usage with Parameters:

This snippet of code will run the robot forward at half

forward(63) ; speed for 2.0 seconds and then stop.

wait(2.0);
stop () ;

Line Track for Time
The robot will track a dark line on a light surface for a specified time in seconds.

| Command:

lineTrackForTime (time, threshold, sensorlLeft, sensorCenter, sensorRight) ;

Parameters: time, threshold, sensorLeft, sensorCenter, sensorRight

Valid Range Values for time:
0 to 3600.0 and up.

Valid Range Values for threshold:
(light) 0 to 4095 (dark).

Acceptable Sensors for sensorLeft, sensorCenter, sensorRight:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will make the robot follow a dark line

on a light surface for 5.0 seconds using a threshold of

stop () ; 505 and line tracking sensors in analog-ports inl, in2,
and in3 (L, C, R) and then stop. These values and sensors
are the defaults for 1ineTrackForTime ().

lineTrackForTime () ;

Usage with Parameters:

This snippet of code will make the robot follow a dark line

on a light surface for 7.5 seconds, using a threshold of 99

and line tracking sensors in analog-ports 6, 7, and 8 (L, C,
R) and then stop.

lineTrackForTime (7.5, 99, in6, in7, in8);
stop () ;

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 6

ROBOTC Natural Language - VEX Cortex Reference:

Line Track for Rotations
The robot will track a dark line on a light surface for a specified distance in encoder rotations.

Command:

lineTrackForRotations (rotations, threshold, sensorLeft, sensorCenter, sensorRight) ;

Parameters: rotations, threshold, sensorLeft, sensorCenter, sensorRight

Valid Range Values for rotations:
0 to 65000.0 and up.

Valid Range Values for threshold:
(light) O to 4095 (dark).

Acceptable Sensors for sensorLeft, sensorCenter, sensorRight:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will make the robot follow a dark line
on a white surface for 3.0 rotations using a threshold of
505 and line tracking sensors in analog-ports inl, in2,
and in3 (L, C, R) and then stop. These values and sensors
are the defaults for 1ineTrackForRotations ().

lineTrackForRotations () ;
stop () ;

Usage with Parameters:

This snippet of code will make the robot follow a dark line
on a white surface for 4.75 rotations, using a threshold of
99 and line tracking sensors in analog-ports 6, 7, and 8
(L, C, R) and then stop.

lineTrackForRotations(4.75, 99, in6, in7, in8);

stop() ;

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 7

ROBOTC Natural Language - VEX Cortex Reference:

Move Straight for Time
The robot will use encoders to maintain a straight course for a specified length of time in seconds.

Command:

moveStraightForTime (time, rightEncoder, leftEncoder) ;

Parameters: time, rightEncoder, leftEncoder

Valid Range Values for time:
0 to 3600.0 and up.

Acceptable Sensors for rightEncoder, leftEncoder:
DIGITAL ports 1 through 11 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

)) This snippet of code will make the robot move forward,
moveStraightForTime () ; e iaht heading f d .
T maintaining a straight heading tor 5.0 seconds using
’ quadrature encoders in digital-ports dgt11(+dgt12)
and digtl3(+dgt14), and then stop. These values and

sensors are the defaults for moveStraightForTime ().
Usage with Parameters:

moveStraightForTime (7.5, dgtls, dgtl3); Th|§ snippet of coo!e will mo!<e the robot move for\{vard,
stop() ; maintaining a straight heading for 7.5 seconds using
PL)7 qguadrature encoders in digital-ports 5+6 and 3+4, and
then stop.

Move Straight for Rotations
The robot will use encoders to maintain a straight course for a specified distance in rotations.

Command:

moveStraightForRotations (time, rightEncoder, leftEncoder) ;

Parameters: rotations, rightEncoder, leftEncoder

Valid Range Values for rotaions:
0 to 65000.0 and up.

Acceptable Sensors for rightEncoder, leftEncoder:
DIGITAL ports 1 through 11 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

. . This snippet of code will make the robot move
moveStraightForRotations () ; forward, maintaining a straight heading for 1.0
stop () ; rotations using quadrature encoders in digital-ports
dgtll(+dgtl2) and digtl3(+dgtl4), and then
stop. These values and sensors are the defaults for

Usage with Parameters: moveStraightForRotations ().

. . This snippet of code will make the robot move forward,
moveStraightForRotations (4.75, dgtl5, dgtl3);
stop () ; maintaining a straight heading for 4.75 rotations using
’ quadrature encoders in digital-ports 5+6 and 3+4, and
then stop.

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference ¢« 8

ROBOTC Natural Language - VEX Cortex Reference:

Tank Control
The robot will be remote controlled in such a way that the right motor is mapped to the right joystick and the left
motor is mapped to the left joystick.

Command:

tankControl (rightJoystick, leftJoystick, threshold) ;

Parameters: rightJoystick, leftJoystick

Valid Channels for rightJoystick, leftJoystick:
Any VEXnet Remote Control channel, however Ch2 and Ch3 make the most sense for this application.

Usage without Parameters:
This snippet of code will remote control the robot using

"tank control". The default right and left joysticks are ch2
and Ch3, and 10 for tankControl ().

while (true)

{
tankControl () ;

Usage with Parameters:

This snippet of code will remote control the robot using
"tank control" with channel 1 as the right joystick and
channel 4 as the left joystick with a threshold of 5.

while (true)

{
tankControl (Chl, Ch4, 5);

Arcade Control
The robot will be remote controlled in such a way that the movement of the robot is mapped to a single joystick,
much like a retro arcade game.

Command:

arcadeControl (verticalJdoystick, horizontalJoystick, threshold) ;

Parameters: verticalJoystick, horizontalJoystick

Valid Channels for verticalJoystick, horizontalJoystick:
Any VEXnet Remote Control channel, however Ch2+Ch1 or Ch3+Ch4 make the most sense for this application.

Usage without Parameters:
This snippet of code will remote control the robot using

"tank control". The default vertical and horizontal joysticks
are Ch2 and chil, and 10 for arcadeControl ().

while (true)

{

arcadeControl () ;

Usage with Parameters:

This snippet of code will remote control the robot using
"tank control" with channel 3 as the vertical joystick and
channel 4 as the horizontal joystick (arcade control with
the left-side joystick) with a threshold of 5.

while (true)

{
arcadeControl (Ch3, Ch4, 5);

}

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 9

ROBOTC Natural Language - VEX Cortex Reference:

Until Functions:

Until Touch
The robot continues what it was doing until the touch sensor is pressed in.

% Command:

untilTouch (sensorPort) ;

Parameters: sensorPort

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the robot forward until the
touch sensor in digital-port 6 is pressed, and then stop.
The default sensor port is dgt16 for untilTouch ().

forward() ;
untilTouch() ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward (63) ; . C e . .

untilTouch (dgt110) ; speed until the touch sensor in digital-port 10 is pressed,
and then stop.

stop() ;

Until Release
The robot continues what it was doing until the touch sensor is released out.

% Command:

untilRelease (sensorPort) ;

Parameters: sensorPort

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the robot forward until the
touch sensor in digital-port 6 is released, and then stop.
The default sensor port is dgt16 for untilRelease ().

forward() ;
untilRelease() ;
stop() ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward (63) ; R

untilRelease (dgtl110) ; speed until the touch sensor in digital-port 10 is released,
and then stop.

stop() ;

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 10

ROBOTC Natural Language - VEX Cortex Reference:

Until Bump
The robot continues what it was doing until the touch sensor is pressed in and then released out.

(A delay time in milliseconds can be specified as well.)
@ Command:

untilBump (sensorPort, delayTimeMS) ;

Parameters: sensorPort, delayTimeMS

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

Valid Range Values for delayTimeMS:
0 to 3600000 and up.

Usage without Parameters:

This snippet of code will run the robot forward until the
touch sensor in digital-port 6 is pressed in and then
released out, and then stop. The default sensor port and
delay time are dgt16 and 10 for untilBump ().

forward() ;
untilBump () ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

iﬁi:igjr:le::;;tllo 100) ; speed until the touch sensor in digital-port 10 is pressed in
stop () ; Pldg ! ’ and then released out (with a delay of 100ms), and then

stop.

Until Button Press
The robot continues what it was doing until a specified button on the VEX LCD is pressed. Connect the VEX LCD to
UART-port 2.

Command:

untilButtonPress (lcdButton) ;

Parameters: 1cdButton

Valid LCD Buttons for 1cdButton:
centerBtnVEX - VEX LCD center button
rightBtnVEX - VEX LCD right button
leftBtnVEX - VEX LCD left button

Usage without Parameters:

This snippet of code will run the robot forward until a
button on the VEX LCD is pressed. The default button is
centerBtnVEX for untilBtnPress ().

forward() ;
untilButtonPress () ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward(63) ; speed until the right button on the VEX LCD is pressed.

untilButtonPress (rightBtnVEX) ;
stop () ;

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 11

ROBOTC Natural Language - VEX Cortex Reference:

Until Sonar Greater Than
The robot continues what it was doing until the sonar sensor reads a value greater than a set distance in centimeters.

' Command:

untilSonarGreaterThan (distance, sensorPort) ;

Parameters: distance, sensorPort

Acceptable Values for distance:
0 to 647 (cm).

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the robot forward until the
sonar sensor in digital-port 849 reads a value greater
than 30 centimeters, and then stop. The default distance
and sensor ports are 30 and dgt18(+dgtl19) for
untilSonarGreaterThan ().

forward() ;
untilSonarGreatherThan () ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward (63) ; R . ..
untilSonarGreatherThan (45, dgtl2); speed until the sonar sensor in digital-port 243 reads a
stop () ; value greater than 45 centimeters, and then stop.

Until Sonar Less Than
The robot continues what it was doing until the sonar sensor reads a value less than a set distance in centimeters.

' Command:

untilSonarLessThan (distance, sensorPort) ;

Parameters: distance, sensorPort

Acceptable Values for distance:
0 to 647 (cm).

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the robot forward until the
sonar sensor in digital-port 8+ 9 reads a value less than
30 centimeters, and then stop. The default distance
and sensor ports are 30 and dgt18(+dgtl19) for
untilSonarLessThan().

forward() ;
untilSonarLessThan() ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward (63) ; R . ..
untilSonarLessThan (45, dgtl2); speed until the sonar sensor in digital-port 243 reads a
stop () ; value less than 45 centimeters, and then stop.

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 12

ROBOTC Natural Language - VEX Cortex Reference:

Until Potentiometer Greater Than
The robot continues what it was doing until the potentiometer sensor reads a value greater than a set position.

-

Command:

untilPotentiometerGreaterThan (position, sensorPort) ;

Parameters: position, sensorPort

Valid Range Values for position:
0 to 4095 (However due to mechanical stops, you may be limited to the range of 5 to 4090.)

Acceptable Sensors for sensorPort:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the motor on port 6 at
speed 95 until the potentiometer in analog-port 6
reaches a value greater than 2048, and then stop. The
default position and sensor port are 2048 and iné6 for
untilPotentiometerGreaterThan ().

startMotor () ;
untilPotentiometerGreaterThan () ;
stop () ;

Usage with Parameters:

This snippet of code will run the motor on port 8 at speed
63 until the potentiometer in analog-port 4 reaches a
value greater than 4000, and then stop.

startMotor (port8, 63);
untilPotentiometerGreaterThan (4000, in4) ;
stop () ;

Until Potentiometer Less Than
The robot continues what it was doing until the potentiometer sensor reads a value less than a set position.

Command:

untilPotentiometerLessThan (position, sensorPort) ;

Parameters: position, sensorPort

Valid Range Values for position:
0 to 4095 (However due to mechanical stops, you may be limited to the range of 5 to 4090.)

Acceptable Sensors for sensorPort:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the motor on port 6 at
speed 95 until the potentiometer in analog-port 6
reaches a value greater than 2048, and then stop. The
default position and sensor port are 2048 and iné for
untilPotentiometerLessThan ().

startMotor () ;
untilPotentiometerLessThan () ;
stop () ;

Usage with Parameters:

This snippet of code will run the motor on port 8 at speed
63 until the potentiometer in analog-port 4 reaches a
value less than 40, and then stop.

startMotor (port8, 63);
untilPotentiometerLessThan (40, ind4) ;
stop () ;

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 13

ROBOTC Natural Language - VEX Cortex Reference:

Until Dark
The robot continues what it was doing until the line tracking sensor reads a value darker than a specified threshold.

Command:

untilDark (threshold, sensorPort) ;

Parameters: threshold, sensorPort

Valid Range Values for threshold:
(light) 0 to 4095 (dark)

Acceptable Sensors for sensorPort:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the robot forward until the line
tracking sensor in analog-port 2 reads a value darker than
1500, and then stop. The default threshold and sensor
port are 1500 and in2 for untilDark ().

forward() ;
untilDark () ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward (63) ; speed until the line tracking sensor in analog-port 4 reads
untilDark (1005, ind4) ; P e oP
—— a value darker than 1005, and then stop.

Until Light
The robot continues what it was doing until the line tracking sensor reads a value lighter than a specified threshold.

Command:

untilLight (threshold, sensorPort) ;

Parameters: threshold, sensorPort

Valid Range Values for threshold:
(light) 0 to 4095 (dark)

Acceptable Sensors for sensorPort:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the robot forward until the line
tracking sensor in analog-port 2 reads a value lighter than
1500, and then stop. The default threshold and sensor
port are 1500 and in2 for untilLight ().

forward() ;
untillLight() ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward (63) ; R . . R
untilLight (1005, ind); speed uryhl the line tracking sensor in analog-port 4 reads
stop () ; a value lighter than 1005, and then stop.

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 14

ROBOTC Natural Language - VEX Cortex Reference:

Until Rotations
The robot continues what it was doing until the quadrature encoder rotations reach the desired value.

0.29

Command:

untilRotations (rotations, sensorPort) ;

Parameters: rotations, sensorPort

Valid Range Values for rotations:
0.0 to 65000.0 and up.

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 11 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the robot forward for 1.0
rotations using a quadrature encoder in digital-port 142,
and then stop. The default rotations and sensor port are
1.0 and dgtll(+dgtl2) for untilRotations ().

forward() ;
untilRotations () ;
stop() ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward (63) ; . . .
. . speed for 2.75 rotations using a quadrature encoder in

untilRotations (2.75, dgtl3); J;Hchoﬁ:3+4 andthawygp 4

stop () ; ! ’

Until Encoder Counts
The robot continues what it was doing until the quadrature encoder counts reach the desired value.

i
9,_, Command:

untilEncoderCounts (counts, sensorPort) ;

Parameters: counts, sensorPort

Valid Range Values for counts:
0 to 65000 and up.

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 11 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will run the robot forward for 360
encoder counts (1.0 rotations) using a quadrature

encoder in digital-port 1+2, and then stop. The default
rotations and sensor port are 360 and dgtl1(+dgtl2) for
untilEncoderCounts().

forward() ;
untilEncoderCounts () ;
stop () ;

Usage with Parameters:

This snippet of code will run the robot forward at half

forward (63) ; . .
untilEncoderCounts (990, dgtl3); speed for 990 encod‘er counts (2.75 rotations) using a
stop () ; quadrature encoder in digital-port 3+4, and then stop.

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 15

ROBOTC Natural Language - VEX Cortex Reference:

Special Functions:

LED ON
Turn an LED in a specified digital-port ON.

i
Command:

turnLEDOn (sensorPort) ;

Parameters: sensorPort

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)
Note that you must set these digital-ports to "VEX LED".

Usage without Parameters:

This snippet of code will turn an LED in digital-port 2 ON.

ke nlol(l) £ The default sensor port is dgt12 for turnLEDOnN () .

Usage with Parameters:

turnLEDON (dgt17) ; This snippet of code will turn an LED in digital-port 7 ON.

LED OFF
Turn an LED in a specified digital-port OFF.

OFF

Command:

turnLEDOff (sensorPort) ;

Parameters: sensorPort

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)
Note that you must set these digital-ports to "VEX LED".

Usage without Parameters:

This snippet of code will turn an LED in digital-port 2 OFF.

turnLEDOLE () ; The default sensor port is dgtl12 for turnLEDO£E ().

Usage with Parameters:

turnLEDOEE (dgtl7) ; This snippet of code will turn an LED in digital-port 7 OFF.

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 16

ROBOTC Natural Language - VEX Cortex Reference:

Flashlight ON
Turn a VEX Flashlight in a specified motor-port ON at a specified brightness.

N
i
> Command:

turnFlashlightOn (motorPort, brightness) ;

Parameters: motorPort, brightness

Acceptable Motors for motorPort:
MOTOR ports 1 through 10 (and your names for them given in Motors and Sensors Setup.)

NOTE Brightness control only available in motor-ports 1 and 10, or 2 through 9 when connected to a VEX Motor
Controller 29.)

Valid Range Values for brightness:
(off) 0 to 127 (bright)

Usage without Parameters:

This snippet of code will turn a VEX Flashlight in motor-
port 4 ON at brightness level 63 (half bright). The
default motor port and brightness are port4 and 63 for
turnFlashlightOn().

turnFlashlightOn () ;

Usage with Parameters:

This snippet of code will turn a VEX Flashlight in motor-port

turnFlashlightOn (portl0, 127); 10 ON at brightness level 127 (full bright).

Flashlight OFF
Turn a VEX Flashlight in a specified motor-port OFF.

OFF
& Command:

\

turnFlashlightOff (motorPort) ;

Parameters: motorPort

Acceptable Motors for motorPort:
MOTOR ports 1 through 10 (and your names for them given in Motors and Sensors Setup.)

Usage without Parameters:

This snippet of code will turn a VEX Flashlight in motor-
port 4 OFF. The default motor port is port4 for
turnFlashlightOf£f ().

turnFlashlightOf£f () ;

Usage with Parameters:

This snippet of code will turn a VEX Flashlight in motor-port

turnFlashlightOff (portl0) ; 10 OFF

© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems ROBOTC Natural Language - VEX Cortex Reference * 17

