
ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 1© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Robot Type
Choose which robot you want to write a program for. Note that not including this command defaults to
"robotType(none);" Also please note that this command should be the first thing in your "task main()".

This snippet of code will set the robot type to none by
default, skipping the setup process. You must manually set
the motors and sensors in the 'Motors and Sensors Setup'
menu.

Parameters: type

Valid Robot Types for type:
none - this will not set up any motors and sensors for you (this is the default.)
recbot - sets the motors and sensors to match a default Recbot.
swervebot - sets the motors and sensors to match a default Swervebot.

robotType(type);

Command:

Usage without Parameters:

robotType();

Usage with Parameters:

robotType(recbot);
This snippet of code will set the robot type to recbot. This
will automatically set up the motor and sensor ports to
match those of a default Recbot.

Setup Functions:

Set Servo
Set a servo to a desired position.

This snippet of code will set the servo on motor-port 6 to
position 0 (center). The default motor-port is port6 and
the default position is 0 for setServo().

Parameters: servo, position

Acceptable Motors for servo:
MOTOR ports 2 through 9 (and your names for them given in Motors and Sensors Setup.)

Valid Range Values for position:
-127 to 127.

setServo(servo, position);

Command:

Usage without Parameters:

setServo();

Usage with Parameters:

setServo(port8, 37);
This snippet of code will set the servo on motor-port 8 to
position 37.

Movement Functions:

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 2© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Start Motor
Set a motor to a speed.

This snippet of code will run the motor in motor-port 6 at
speed 95 for 1.0 seconds and then stop it. The default
motor-port is port6 and the default speed is 95 for
startMotor().

Parameters: motor, speed

Acceptable Motors for motor:
MOTOR ports 1 through 10 (and your names for them given in Motors and Sensors Setup.)

Valid Range Values for speed:
-127 (reverse) to 127 (forward) where 0 is stop.

startMotor(motor, speed);

Command:

Usage without Parameters:

startMotor();
wait();
stopMotor();

Usage with Parameters:

startMotor(port8, -32);
wait(0.5);
stopMotor(port8);

This snippet of code will run the motor in motor-port 8 at
speed -32 for 0.5 seconds and then stop it.

Stop Motor
Stops a motor.

This snippet of code will run the motor in motor-port 6 at
speed 95 for 1.0 seconds and then stop it. The default
motor-port is port6 for stopMotor().

Parameters: motor

Acceptable Motors for motor:
MOTOR ports 1 through 10 (and your names for them given in Motors and Sensors Setup.)

stopMotor(motor);

Command:

Usage without Parameters:

startMotor();
wait();
stopMotor();

Usage with Parameters:

startMotor(port8, -32);
wait(0.5);
stopMotor(port8);

This snippet of code will run the motor in motor-port 8 at
speed -32 for 0.5 seconds and then stop it.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 3© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Wait in Milliseconds
Wait an amount of time in milliseconds. The robot continues to do what it was doing during this time.

This snippet of code will run the robot forward for 1000
milliseconds (1.0 seconds) and then stop. The default time
is 1000 (milliseconds) for waitInMilliseconds().

Parameters: time

Valid Range Values for time:
0 to 3600000 and up.

waitInMilliseconds(time);

Command:

Usage without Parameters:

forward();
waitInMilliseconds();
stop();

Usage with Parameters:

forward(63);
waitInMilliseconds(2730);
stop();

This snippet of code will run the robot forward at half
speed for 2730 milliseconds (2.73 seconds) and then stop.

Wait
Wait an amount of time measured in seconds. The robot continues to do what it was doing during this time.

This snippet of code will run the robot forward for 1.0
seconds and then stop. The default time is 1.0 (seconds)
for wait().

Parameters: time

Valid Range Values for time:
0.0 to 3600.0 and up.

wait(time);

Command:

Usage without Parameters:

forward();
wait();
stop();

Usage with Parameters:

forward(63);
wait(2.73);
stop();

This snippet of code will run the robot forward at half
speed for 2.73 seconds and then stop.

Wait Functions:

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 4© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Forward
Both wheels rotate forward at the same speed, causing the robot to move forward.

Parameters: speed

Valid Range Values for speed:
0 to 127 (however forward() will always move your robot forward.)

forward(speed);

Command:

Robot Movement Functions:
Note that for desirable results with the following set of functions, you must use the "robotType();" Setup Function with either recbot or
swervebot in the beginning of your "task main()".

This snippet of code will run the robot forward for 1.0
seconds and then stop. The default speed is 95 for
forward().

Usage without Parameters:

forward();
wait();
stop();

Usage with Parameters:

forward(63);
wait(2.0);
stop();

This snippet of code will run the robot forward at half
speed for 2.0 seconds and then stop.

Backward
Both wheels rotate backward at the same speed, causing the robot to move backward.

Parameters: speed

Valid Range Values for speed:
-127 to 0 (however backward() will always move your robot backward.)

backward(speed);

Command:

This snippet of code will run the robot backward for 1.0
seconds and then stop. The default speed is -95 for
backward().

Usage without Parameters:

backward();
wait();
stop();

Usage with Parameters:

backward(-63);
wait(2.0);
stop();

This snippet of code will run the robot backward at half
speed for 2.0 seconds and then stop.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 5© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Point Turn
Both wheels rotate at the same speed but in opposite directions, causing the robot to turn in place.

This snippet of code will make the robot turn right in place
at speed 95 for 1.0 seconds and then stop. The default
direction and speed are right and 95 for pointTurn().

Parameters: direction, speed

Valid Directions for direction:
left and right.

Valid Range Values for speed:
-127 to 127.

pointTurn(direction, speed);

Command:

Usage without Parameters:

pointTurn();
wait();
stop();

Usage with Parameters:

pointTurn(left, 63);
wait(0.4);
stop();

This snippet of code will make the robot turn left in place
at half speed for 0.4 seconds.

Swing Turn
One wheel rotates while the other does not move, causing the robot to make a wide turn around the stopped wheel.

This snippet of code will make the robot make a wide
right turn at speed 95 for 1.0 seconds and then stop.
The default direction and speed are right and 95 for
swingTurn().

Parameters: direction, speed

Valid Directions for direction:
left and right.

Valid Range Values for speed:
-127 to 127.

swingTurn(direction, speed);

Command:

Usage without Parameters:

swingTurn();
wait();
stop();

Usage with Parameters:

swingTurn(left, 63);
wait(0.75);
stop();

This snippet of code will make the robot make a wide left
turn at half speed for 0.75 seconds.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 6© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Stop
Both wheels do not move, causing the robot to stop.

This snippet of code will run the robot forward for
1.0 seconds and then stop. (Note that there are no
parameters for stop().

Parameters: N/A

stop();

Command:

Usage without Parameters:

forward();
wait();
stop();

Usage with Parameters:

forward(63);
wait(2.0);
stop();

This snippet of code will run the robot forward at half
speed for 2.0 seconds and then stop.

Line Track for Time
The robot will track a dark line on a light surface for a specified time in seconds.

This snippet of code will make the robot follow a dark line
on a light surface for 5.0 seconds using a threshold of
505 and line tracking sensors in analog-ports in1, in2,
and in3 (L, C, R) and then stop. These values and sensors
are the defaults for lineTrackForTime().

Parameters: time, threshold, sensorLeft, sensorCenter, sensorRight

Valid Range Values for time:
0 to 3600.0 and up.

Valid Range Values for threshold:
(light) 0 to 4095 (dark).

Acceptable Sensors for sensorLeft, sensorCenter, sensorRight:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

lineTrackForTime(time, threshold, sensorLeft, sensorCenter, sensorRight);

Command:

Usage without Parameters:

lineTrackForTime();
stop();

Usage with Parameters:

lineTrackForTime(7.5, 99, in6, in7, in8);
stop();

This snippet of code will make the robot follow a dark line
on a light surface for 7.5 seconds, using a threshold of 99
and line tracking sensors in analog-ports 6, 7, and 8 (L, C,
R) and then stop.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 7© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Line Track for Rotations
The robot will track a dark line on a light surface for a specified distance in encoder rotations.

This snippet of code will make the robot follow a dark line
on a white surface for 3.0 rotations using a threshold of
505 and line tracking sensors in analog-ports in1, in2,
and in3 (L, C, R) and then stop. These values and sensors
are the defaults for lineTrackForRotations().

Parameters: rotations, threshold, sensorLeft, sensorCenter, sensorRight

Valid Range Values for rotations:
0 to 65000.0 and up.

Valid Range Values for threshold:
(light) 0 to 4095 (dark).

Acceptable Sensors for sensorLeft, sensorCenter, sensorRight:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

lineTrackForRotations(rotations, threshold, sensorLeft, sensorCenter, sensorRight);

Command:

Usage without Parameters:

lineTrackForRotations();
stop();

Usage with Parameters:

lineTrackForRotations(4.75, 99, in6, in7, in8);

stop();

This snippet of code will make the robot follow a dark line
on a white surface for 4.75 rotations, using a threshold of
99 and line tracking sensors in analog-ports 6, 7, and 8
(L, C, R) and then stop.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 8© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Move Straight for Time
The robot will use encoders to maintain a straight course for a specified length of time in seconds.

This snippet of code will make the robot move forward,
maintaining a straight heading for 5.0 seconds using
quadrature encoders in digital-ports dgtl1(+dgtl2)
and digtl3(+dgtl4), and then stop. These values and
sensors are the defaults for moveStraightForTime().

Parameters: time, rightEncoder, leftEncoder

Valid Range Values for time:
0 to 3600.0 and up.

Acceptable Sensors for rightEncoder, leftEncoder:
DIGITAL ports 1 through 11 (and your names for them given in Motors and Sensors Setup.)

moveStraightForTime(time, rightEncoder, leftEncoder);

Command:

Usage without Parameters:

moveStraightForTime();
stop();

Usage with Parameters:

moveStraightForTime(7.5, dgtl5, dgtl3);
stop();

This snippet of code will make the robot move forward,
maintaining a straight heading for 7.5 seconds using
quadrature encoders in digital-ports 5+6 and 3+4, and
then stop.

Move Straight for Rotations
The robot will use encoders to maintain a straight course for a specified distance in rotations.

This snippet of code will make the robot move
forward, maintaining a straight heading for 1.0
rotations using quadrature encoders in digital-ports
dgtl1(+dgtl2) and digtl3(+dgtl4), and then
stop. These values and sensors are the defaults for
moveStraightForRotations().

Parameters: rotations, rightEncoder, leftEncoder

Valid Range Values for rotaions:
0 to 65000.0 and up.

Acceptable Sensors for rightEncoder, leftEncoder:
DIGITAL ports 1 through 11 (and your names for them given in Motors and Sensors Setup.)

moveStraightForRotations(time, rightEncoder, leftEncoder);

Command:

Usage without Parameters:

moveStraightForRotations();
stop();

Usage with Parameters:

moveStraightForRotations(4.75, dgtl5, dgtl3);
stop();

This snippet of code will make the robot move forward,
maintaining a straight heading for 4.75 rotations using
quadrature encoders in digital-ports 5+6 and 3+4, and
then stop.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 9© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Tank Control
The robot will be remote controlled in such a way that the right motor is mapped to the right joystick and the left
motor is mapped to the left joystick.

This snippet of code will remote control the robot using
"tank control". The default right and left joysticks are Ch2
and Ch3, and 10 for tankControl().

Parameters: rightJoystick, leftJoystick

Valid Channels for rightJoystick, leftJoystick:
Any VEXnet Remote Control channel, however Ch2 and Ch3 make the most sense for this application.

tankControl(rightJoystick, leftJoystick, threshold);

Command:

Usage without Parameters:

while(true)
{
 tankControl();
}

Usage with Parameters:

while(true)
{
 tankControl(Ch1, Ch4, 5);
}

This snippet of code will remote control the robot using
"tank control" with channel 1 as the right joystick and
channel 4 as the left joystick with a threshold of 5.

Arcade Control
The robot will be remote controlled in such a way that the movement of the robot is mapped to a single joystick,
much like a retro arcade game.

This snippet of code will remote control the robot using
"tank control". The default vertical and horizontal joysticks
are Ch2 and Ch1, and 10 for arcadeControl().

Parameters: verticalJoystick, horizontalJoystick

Valid Channels for verticalJoystick, horizontalJoystick:
Any VEXnet Remote Control channel, however Ch2+Ch1 or Ch3+Ch4 make the most sense for this application.

arcadeControl(verticalJoystick, horizontalJoystick, threshold);

Command:

Usage without Parameters:

while(true)
{
 arcadeControl();
}

Usage with Parameters:

while(true)
{
 arcadeControl(Ch3, Ch4, 5);
}

This snippet of code will remote control the robot using
"tank control" with channel 3 as the vertical joystick and
channel 4 as the horizontal joystick (arcade control with
the left-side joystick) with a threshold of 5.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 10© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Until Touch
The robot continues what it was doing until the touch sensor is pressed in.

Parameters: sensorPort

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

untilTouch(sensorPort);

Command:

Until Functions:

This snippet of code will run the robot forward until the
touch sensor in digital-port 6 is pressed, and then stop.
The default sensor port is dgtl6 for untilTouch().

Usage without Parameters:

forward();
untilTouch();
stop();

Usage with Parameters:

forward(63);
untilTouch(dgtl10);
stop();

This snippet of code will run the robot forward at half
speed until the touch sensor in digital-port 10 is pressed,
and then stop.

Until Release
The robot continues what it was doing until the touch sensor is released out.

Parameters: sensorPort

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

untilRelease(sensorPort);

Command:

This snippet of code will run the robot forward until the
touch sensor in digital-port 6 is released, and then stop.
The default sensor port is dgtl6 for untilRelease().

Usage without Parameters:

forward();
untilRelease();
stop();

Usage with Parameters:

forward(63);
untilRelease(dgtl10);
stop();

This snippet of code will run the robot forward at half
speed until the touch sensor in digital-port 10 is released,
and then stop.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 11© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Until Bump
The robot continues what it was doing until the touch sensor is pressed in and then released out.
 (A delay time in milliseconds can be specified as well.)

This snippet of code will run the robot forward until the
touch sensor in digital-port 6 is pressed in and then
released out, and then stop. The default sensor port and
delay time are dgtl6 and 10 for untilBump().

Parameters: sensorPort, delayTimeMS

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

Valid Range Values for delayTimeMS:
0 to 3600000 and up.

untilBump(sensorPort, delayTimeMS);

Command:

Usage without Parameters:

forward();
untilBump();
stop();

Usage with Parameters:

forward(63);
untilBump(dgtl10, 100);
stop();

This snippet of code will run the robot forward at half
speed until the touch sensor in digital-port 10 is pressed in
and then released out (with a delay of 100ms), and then
stop.

Until Button Press
The robot continues what it was doing until a specified button on the VEX LCD is pressed. Connect the VEX LCD to
UART-port 2.

This snippet of code will run the robot forward until a
button on the VEX LCD is pressed. The default button is
centerBtnVEX for untilBtnPress().

Parameters: lcdButton

Valid LCD Buttons for lcdButton:
centerBtnVEX - VEX LCD center button
rightBtnVEX - VEX LCD right button
leftBtnVEX - VEX LCD left button

untilButtonPress(lcdButton);

Command:

Usage without Parameters:

forward();
untilButtonPress();
stop();

Usage with Parameters:

forward(63);
untilButtonPress(rightBtnVEX);
stop();

This snippet of code will run the robot forward at half
speed until the right button on the VEX LCD is pressed.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 12© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Until Sonar Greater Than
The robot continues what it was doing until the sonar sensor reads a value greater than a set distance in centimeters.

This snippet of code will run the robot forward until the
sonar sensor in digital-port 8+9 reads a value greater
than 30 centimeters, and then stop. The default distance
and sensor ports are 30 and dgtl8(+dgtl9) for
untilSonarGreaterThan().

Parameters: distance, sensorPort

Acceptable Values for distance:
0 to 647 (cm).

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

untilSonarGreaterThan(distance, sensorPort);

Command:

Usage without Parameters:

forward();
untilSonarGreatherThan();
stop();

Usage with Parameters:

forward(63);
untilSonarGreatherThan(45, dgtl2);
stop();

This snippet of code will run the robot forward at half
speed until the sonar sensor in digital-port 2+3 reads a
value greater than 45 centimeters, and then stop.

Until Sonar Less Than
The robot continues what it was doing until the sonar sensor reads a value less than a set distance in centimeters.

This snippet of code will run the robot forward until the
sonar sensor in digital-port 8+9 reads a value less than
30 centimeters, and then stop. The default distance
and sensor ports are 30 and dgtl8(+dgtl9) for
untilSonarLessThan().

Parameters: distance, sensorPort

Acceptable Values for distance:
0 to 647 (cm).

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)

untilSonarLessThan(distance, sensorPort);

Command:

Usage without Parameters:

forward();
untilSonarLessThan();
stop();

Usage with Parameters:

forward(63);
untilSonarLessThan(45, dgtl2);
stop();

This snippet of code will run the robot forward at half
speed until the sonar sensor in digital-port 2+3 reads a
value less than 45 centimeters, and then stop.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 13© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Until Potentiometer Greater Than
The robot continues what it was doing until the potentiometer sensor reads a value greater than a set position.

This snippet of code will run the motor on port 6 at
speed 95 until the potentiometer in analog-port 6
reaches a value greater than 2048, and then stop. The
default position and sensor port are 2048 and in6 for
untilPotentiometerGreaterThan().

Parameters: position, sensorPort

Valid Range Values for position:
0 to 4095 (However due to mechanical stops, you may be limited to the range of 5 to 4090.)

Acceptable Sensors for sensorPort:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

untilPotentiometerGreaterThan(position, sensorPort);

Command:

Usage without Parameters:

startMotor();
untilPotentiometerGreaterThan();
stop();

Usage with Parameters:

startMotor(port8, 63);
untilPotentiometerGreaterThan(4000, in4);
stop();

This snippet of code will run the motor on port 8 at speed
63 until the potentiometer in analog-port 4 reaches a
value greater than 4000, and then stop.

Until Potentiometer Less Than
The robot continues what it was doing until the potentiometer sensor reads a value less than a set position.

This snippet of code will run the motor on port 6 at
speed 95 until the potentiometer in analog-port 6
reaches a value greater than 2048, and then stop. The
default position and sensor port are 2048 and in6 for
untilPotentiometerLessThan().

Parameters: position, sensorPort

Valid Range Values for position:
0 to 4095 (However due to mechanical stops, you may be limited to the range of 5 to 4090.)

Acceptable Sensors for sensorPort:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

untilPotentiometerLessThan(position, sensorPort);

Command:

Usage without Parameters:

startMotor();
untilPotentiometerLessThan();
stop();

Usage with Parameters:

startMotor(port8, 63);
untilPotentiometerLessThan(40, in4);
stop();

This snippet of code will run the motor on port 8 at speed
63 until the potentiometer in analog-port 4 reaches a
value less than 40, and then stop.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 14© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Until Dark
The robot continues what it was doing until the line tracking sensor reads a value darker than a specified threshold.

This snippet of code will run the robot forward until the line
tracking sensor in analog-port 2 reads a value darker than
1500, and then stop. The default threshold and sensor
port are 1500 and in2 for untilDark().

Parameters: threshold, sensorPort

Valid Range Values for threshold:
(light) 0 to 4095 (dark)

Acceptable Sensors for sensorPort:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

untilDark(threshold, sensorPort);

Command:

Usage without Parameters:

forward();
untilDark();
stop();

Usage with Parameters:

forward(63);
untilDark(1005, in4);
stop();

This snippet of code will run the robot forward at half
speed until the line tracking sensor in analog-port 4 reads
a value darker than 1005, and then stop.

Until Light
The robot continues what it was doing until the line tracking sensor reads a value lighter than a specified threshold.

This snippet of code will run the robot forward until the line
tracking sensor in analog-port 2 reads a value lighter than
1500, and then stop. The default threshold and sensor
port are 1500 and in2 for untilLight().

Parameters: threshold, sensorPort

Valid Range Values for threshold:
(light) 0 to 4095 (dark)

Acceptable Sensors for sensorPort:
ANALOG ports 1 through 8 (and your names for them given in Motors and Sensors Setup.)

untilLight(threshold, sensorPort);

Command:

Usage without Parameters:

forward();
untilLight();
stop();

Usage with Parameters:

forward(63);
untilLight(1005, in4);
stop();

This snippet of code will run the robot forward at half
speed until the line tracking sensor in analog-port 4 reads
a value lighter than 1005, and then stop.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 15© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Until Rotations
The robot continues what it was doing until the quadrature encoder rotations reach the desired value.

This snippet of code will run the robot forward for 1.0
rotations using a quadrature encoder in digital-port 1+2,
and then stop. The default rotations and sensor port are
1.0 and dgtl1(+dgtl2) for untilRotations().

Parameters: rotations, sensorPort

Valid Range Values for rotations:
0.0 to 65000.0 and up.

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 11 (and your names for them given in Motors and Sensors Setup.)

untilRotations(rotations, sensorPort);

Command:

Usage without Parameters:

forward();
untilRotations();
stop();

Usage with Parameters:

forward(63);
untilRotations(2.75, dgtl3);
stop();

This snippet of code will run the robot forward at half
speed for 2.75 rotations using a quadrature encoder in
digital-port 3+4, and then stop.

Until Encoder Counts
The robot continues what it was doing until the quadrature encoder counts reach the desired value.

This snippet of code will run the robot forward for 360
encoder counts (1.0 rotations) using a quadrature
encoder in digital-port 1+2, and then stop. The default
rotations and sensor port are 360 and dgtl1(+dgtl2) for
untilEncoderCounts().

Parameters: counts, sensorPort

Valid Range Values for counts:
0 to 65000 and up.

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 11 (and your names for them given in Motors and Sensors Setup.)

untilEncoderCounts(counts, sensorPort);

Command:

Usage without Parameters:

forward();
untilEncoderCounts();
stop();

Usage with Parameters:

forward(63);
untilEncoderCounts(990, dgtl3);
stop();

This snippet of code will run the robot forward at half
speed for 990 encoder counts (2.75 rotations) using a
quadrature encoder in digital-port 3+4, and then stop.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 16© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

LED ON
Turn an LED in a specified digital-port ON.

Parameters: sensorPort

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)
Note that you must set these digital-ports to "VEX LED".

turnLEDOn(sensorPort);

Command:

Special Functions:

This snippet of code will turn an LED in digital-port 2 ON.
The default sensor port is dgtl2 for turnLEDOn().

Usage without Parameters:

turnLEDOn();

Usage with Parameters:

turnLEDOn(dgtl7);
This snippet of code will turn an LED in digital-port 7 ON.

LED OFF
Turn an LED in a specified digital-port OFF.

Parameters: sensorPort

Acceptable Sensors for sensorPort:
DIGITAL ports 1 through 12 (and your names for them given in Motors and Sensors Setup.)
Note that you must set these digital-ports to "VEX LED".

turnLEDOff(sensorPort);

Command:

This snippet of code will turn an LED in digital-port 2 OFF.
The default sensor port is dgtl2 for turnLEDOff().

Usage without Parameters:

turnLEDOff();

Usage with Parameters:

turnLEDOff(dgtl7);
This snippet of code will turn an LED in digital-port 7 OFF.

ROBOTC Natural Language - VEX Cortex Reference:

ROBOTC Natural Language - VEX Cortex Reference • 17© 2011 Carnegie Mellon Robotics Academy / For use with VEX Robotics Systems

Flashlight ON
Turn a VEX Flashlight in a specified motor-port ON at a specified brightness.

This snippet of code will turn a VEX Flashlight in motor-
port 4 ON at brightness level 63 (half bright). The
default motor port and brightness are port4 and 63 for
turnFlashlightOn().

Parameters: motorPort, brightness

Acceptable Motors for motorPort:
MOTOR ports 1 through 10 (and your names for them given in Motors and Sensors Setup.)

NOTE Brightness control only available in motor-ports 1 and 10, or 2 through 9 when connected to a VEX Motor
Controller 29.)

Valid Range Values for brightness:
(off) 0 to 127 (bright)

turnFlashlightOn(motorPort, brightness);

Command:

Usage without Parameters:

turnFlashlightOn();

Usage with Parameters:

turnFlashlightOn(port10, 127);
This snippet of code will turn a VEX Flashlight in motor-port
10 ON at brightness level 127 (full bright).

Flashlight OFF
Turn a VEX Flashlight in a specified motor-port OFF.

This snippet of code will turn a VEX Flashlight in motor-
port 4 OFF. The default motor port is port4 for
turnFlashlightOff().

Parameters: motorPort

Acceptable Motors for motorPort:
MOTOR ports 1 through 10 (and your names for them given in Motors and Sensors Setup.)

turnFlashlightOff(motorPort);

Command:

Usage without Parameters:

turnFlashlightOff();

Usage with Parameters:

turnFlashlightOff(port10);
This snippet of code will turn a VEX Flashlight in motor-port
10 OFF.

