
ROBOTC

Reference

While Loop© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

While Loops with Natural Language

	while(condition)
	{
				//	repeated-commands
	}

There are three main parts to every while loop.

Part 1. The keyword “while”.

The condition is true as long as
1 is equal to 1, which is always.

task	main()
{		 	 	
	while(1	==	1)
	{	
			startMotor(port2,	63);
			wait(5.0);

			startMotor(port2,	-63);
			wait(5.0);
	}
}

Below is an example of a program using an infinite While Loop.

A while loop is a structure within ROBOTC which allows a section of code to be repeated
as long as a certain condition remains true.

While the condition is true, the
port2 motor will turn forward
for 5 seconds, then in reverse
for 5 seconds.

Result: The port2 motor will turn
back and forth, forever.

while
Every while loop begins with the keyword “while”.

	while(condition)
	{
				//	repeated-commands
	}

Part 2. The condition.

(condition)
The condition controls how long or how many times a while loop
repeats. While the condition is true, the while loop repeats; when
the condition is false, the while loop ends and the robot moves
on in the program. The condition is checked every time the loop
repeats, before the commands between the curly braces are run.

	while(condition)
	{
				//	repeated-commands
	}

Part 3. The commands to be repeated, or “looped”.

Repeated commands
Commands placed between the curly braces will repeat
while the (condition) is true when the program checks at
the beginning of each pass through the loop.

ROBOTC

Reference

While Loop© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

#pragma	config(Sensor,	dgtl1,		Estop,							sensorTouch)
#pragma	config(Sensor,	dgtl2,		controlBtn,		sensorTouch)
#pragma	config(Sensor,	dgtl3,		LED,									sensorDigitalOut)

task	main()
{		
	while(SensorValue[Estop]	==	0)
	{	
		if(SensorValue[controlBtn]	==	1)
		{
				turnLEDOn(LED);
		}
		else
		{
				turnLEDOff(LED);
		}
	}
}

Checks if count is “less than” 4.

task	main()
{		
	int	count	=	0;
					
	while(count	<	4)
	{	
			startMotor(port2,	63);
			wait(5.0);

			startMotor(port2,	-63);
			wait(5.0);

			count	=	count	+	1;
	}
}

Below is an example of a program using a counter-controlled While Loop.

Creates an integer variable named
“count” and gives it an initial value of 0.

Adds 1 to count every time the loop runs.

Result: The loop repeats 4 times, causing
the port2 motor to turn back and forth,
four times.

Checks if the “Estop” touch sensor
is equal to 0 (unpressed).

Below is an example of a program using a sensor-controlled While Loop.

If the “controlBtn” is pressed, turn the LED
on; if it’s not, turn the LED off.

Result: The loop repeats continuously,
allowing the LED to be turned on while
the “controlBtn” is pressed, and off while
“controlBtn” is released. The loop will
stop as soon as the “Estop” touch sensor
is pressed.

While Loops with Natural Language

