
ROBOTC

Fundamentals

ROBOTC Programming • 1© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

In this lesson, you will learn the basic rules for writing ROBOTC programs.

ROBOTC is a text-based programming language

Programming in ROBOTC ROBOTC Rules

Commands to the robot are first written as text on the screen. They are then processed by the ROBOTC
compiler into a machine language file that the robot can understand. Finally, they are loaded onto the
robot, where they can be run.

task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

Program Code
Commands to the
robot written as text.

1
2
3
4
5
6
7

Text written as part of a program is called code. You type code just like you type normal text. Keep in
mind that capitalization is important to the computer. Replacing a lowercase letter with a capital letter
(or a capital letter with a lowercase letter) will cause the robot to become confused.

Task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

Capitalization
Capitalization (paying attention to UPPERCASE vs.
lowercase) is important in ROBOTC.

If you capitalize the ‘T’ in task, ROBOTC
no longer recognizes this command.

1
2
3
4
5
6
7

As you type, ROBOTC will try to help you out by coloring the words it recognizes. If a word appears in a
different color, it means ROBOTC recognizes it as an important word in the programming language.

task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

Code coloring
ROBOTC automatically colors key words
that it recognizes.

Compare this correctly-capitalized “task” command
with the incorrectly-capitalized version in the
previous example. The correct one is recognized as
a command and turns blue.

1
2
3
4
5
6
7

ROBOTC

Fundamentals

ROBOTC Programming • 2© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

v task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Now, we will look at some of the important parts of the program code itself.

Statements are instructions for the robot. The most basic kind of statement in ROBOTC simply gives
a command to the robot. The motor[port3] = 127; statement in the sample program you
downloaded is a simple statement that gives a command. It instructs the motor plugged into Motor
Port 3 to turn on at full power.

task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

Simple statement
A straightforward command to the robot.

This statement tells the robot to turn on the
motor attached to motor port 3 at full power.

1
2
3
4
5
6
7

Statements are run in order as quickly as the robot is able to reach them. Running this program on the
robot turns the motor on, then waits for 3000 milliseconds (3 seconds) with the motor still running, and
then ends.

Sequence
Statements run in English reading order
(left-to-right, top-to-bottom). As soon as
a command is complete, the next one runs.
These two statements cause the motors to turn
on (1st command). The robot then immediately
begins a three second wait (2nd command)
while the motors remain on.

Programming in ROBOTC ROBOTC Rules (cont.)

Simple statement (2)
This is also a simple statement.
It tells the robot to wait for 3000
milliseconds (3 seconds).

1st

2nd

End
When the program runs out of statements
and reaches the } symbol in task main, all
motors stop and the program ends.

End

ROBOTC

Fundamentals

ROBOTC Programming • 3© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

How did ROBOTC know that motor[port3]= 127 and wait1msec[3000] were two
separate commands. Was it because they appeared on two different lines?

No. Spaces and line breaks in ROBOTC are only used to separate words from each other in
multi-word commands. Spaces, tabs, and lines don’t affect the way a program is interpreted by
the machine.

task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

Whitespace
Spaces, tabs, and line breaks are
generally unimportant to ROBOTC and
the robot.

They are sometimes needed to separate
words in multi-word commands, but
are otherwise ignored by the machine.

1
2
3
4
5
6
7

But what about ROBOTC? How DID it know where one statement ended and the other began?
It knew because of the semicolon (;) at the end of each line. Every statement ends with a semicolon.
It’s like the period at the end of a sentence.

Semicolons
Like periods in an English sentence,
semicolons mark the end of every
ROBOTC statement.

task main(){motor[port3]
=127;wait1Msec(3000);}

No Whitespace
To ROBOTC, this program is the same as
the last one. To the human programmer,
however, this is close to gibberish.

Whitespace is used to make programs
readable to humans.

1
2

So why ARE they on separate lines? For the programmer. Programming languages are designed
for humans and machines to communicate. Using spaces, tabs, and lines helps human
programmers read the code more easily. Making good use of spacing in your program is a very
good habit for your own sake.

Checkpoint

Statements are commands for the robot. Each statement ends in a semicolon so that ROBOTC can
identify it. Each statement is also usually written on its own line to make it easier for humans to read.
Statements are run in reading order, from left to right and top to bottom. Each statement is run as
soon as the previous one is complete. When there are no more statements, the program ends.

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

Fundamentals

ROBOTC Programming • 4© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

ROBOTC uses far more punctuation than English. Punctuation in programming languages is
generally used to separate important areas of code from each other. Most ROBOTC punctuation
comes in pairs.

Punctuation pairs, like the parentheses and square brackets in these two statements, are used to
mark off special areas of code. Every punctuation pair consists of an opening punctuation mark
and a closing punctuation mark. The punctuation pair designates the area between them as
having special meaning to the command that they are part of.

task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Checkpoint

Paired punctuation marks (such as square brackets and parentheses) are always used together.
They surround specific important parts of a statement to set them apart.

Different commands make use of different kinds of paired punctuation. The motor command uses
square brackets and the wait1Msec command uses parentheses. This is just the way the commands
are set up. You will have to remember to use the right punctuation with the right commands or plan.

Punctuation pair: Square brackets []
The code written between the square brackets
of the motor command indicates which motor
the command should use. In this case, it is the
motor on port 3.

task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Punctuation pair: Parentheses ()
The code written between the parentheses
of the wait1Msec command tell it how
many milliseconds to wait before starting a
new command. In this case, it waits 3000
milliseconds, or three seconds.

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

Fundamentals

ROBOTC Programming • 5© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Simple statements do the work in ROBOTC, but control structures do the thinking. Control
structures (or control statements) are pieces of code that control the flow of the program’s
commands, rather than issue direct orders to the robot.

Simple statements can only run one after another in order. However, control structures allow the
program to choose the order in which statements are run. For instance, a control structure may
tell the program to choose between two different groups of statements and only run one of them.
Sometimes, control structures repeat a group of statements over and over again.

One important control structure is task main. Every ROBOTC program includes a special section
called task main. This control structure determines which code the robot will run as part of the
main program.

task main()
{

 motor[port3] = 127;
 wait1Msec(3000);

}

1
2
3
4
5
6
7

Checkpoint

Control structures like task main determine which lines of code are run and specify when they
are run. They control the order in which commands are executed in your program. Control structures
enable your robot to make decisions and respond intelligently to its environment.

Control structure: task main
The control structure task main directs the
program to the main body of the code. When you

click the Start button in ROBOTC or turn on the
robot, the program immediately goes to task main
and runs the code it finds there.

The left and right curly braces { } belong to the task
main structure. They surround the commands which
will be run in the program.

while(SensorValue(touchSensor) == 0)
{
 motor[port3] = 127;
 motor[port2] = 127;
}

Control structure: while loop
The while loop repeats the code
between its curly braces { } as
long as certain conditions are met.

Normally, statements run only
once. But with a while loop, they
can be told to repeat over and
over for as long as you want!

Programming in ROBOTC ROBOTC Rules (cont.)

ROBOTC

Fundamentals

ROBOTC Programming • 6© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Programming languages are meant to be readable by both humans and machines. Sometimes, a
programmer needs to leave a note for other human readers to help them understand what the code is
doing. ROBOTC allows comments to be made for this purpose.

Comments are text that the program ignores. A comment can contain notes, messages, and symbols
that may help a human, but would be meaningless to the robot. ROBOTC simply skips over them.
Comments appear in green in ROBOTC.

End of Section

What you have just seen are some of the primary features of the ROBOTC language. Code is entered
as text, which builds statements. Statements are used to issue commands to the robots. Control
structures decide which statements to run at what times. Punctuation, both single like semicolons
and paired like parentheses, is used to set apart important parts of commands.

A number of features in ROBOTC code are designed to help the human, rather than the robot.
Comments let programmers leave notes for themselves and others. Whitespace like tabs and
spaces helps to keep your code organized and readable.

// Motor port 3 forward with 100% power

task main()
{

 /*
 Port 3 forward with 100% power
 Do this for 3 seconds
 */

 motor[port3] = 127;
 wait1Msec(3000);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Comments: // Single line
Any section of text that follows a
// (two forward slash characters)
on a line is considered to be a
comment. Any text to the left of
the // is treated as normal code.

Comments: /* Any length */
A comment can be created in ROBOTC
using another type of paired punctuation,
which starts with /* and ends with */
This type of comment can span multiple
lines, so be sure to include both the
opening and closing marks!

Programming in ROBOTC ROBOTC Rules (cont.)

