Unit 5: Modern Physics (Physical Science, Engineering Design) Copied from: Physics w/Lab (Physical Science), Copied on: 02/21/22 Content Area: Science Course(s): Physics w/Lab Time Period: Length: **25 Days** Status: **Published** # **Title Section** # **Department of Curriculum and Instruction** **Belleville Public Schools** **Curriculum Guide** Physics A, Unit 5 Modern Physics Belleville Board of Education 102 Passaic Avenue Belleville, NJ 07109 Prepared by: Recep Balki Dr. Richard Tomko, Ph.D., M.J., Superintendent of Schools Ms. LucyAnn Demikoff, Director of Curriculum and Instruction K-12 Ms. Nicole Shanklin, Director of Elementary Education K-8, ESL Coordinator K-12 Mr. George Droste, Director of Secondary Education Board Approved: September 23, 2019 ### **Unit Overview** In this unit, students will be introduced to the world through the eyes of a physicist, whose principle goal is to study the underlying nature of everyday processes and to investigate the structure of the universe in terms of scientific analysis. Modern physics began in the early 20th century with the work of Max Planck in quantum theory and Albert Einstein's theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. Classical mechanics predicted a varying speed of light, which could not be resolved with the constant speed predicted by Maxwell's equations of electromagnetism; this discrepancy was corrected by Einstein's theory of special relativity, which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light. Black-body radiation provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators is possible only in discrete steps proportional to their frequency; this, along with the photoelectric effect and a complete theory predicting discrete energy levels of electron orbitals, led to the theory of quantum mechanics taking over from classical physics at very small scales. ## **Enduring Understanding** - The internal structure of a system determines many properties of the system. - Classical mechanics cannot describe all properties of objects. # **Essential Questions** In what ways were misconceptions in physics corrected by modern physicists How do physicists currently view the nature of the universe? What are the current gaps in understanding? What behavior is exhibited by particles on the atomic scale? How is the nucleus affected during various nuclear reactions? How do LEDs/Lasers work? Why are only certain transitions between energy states of the atom allowed? How can you predict how certain atoms will combine to form compounds? Why do nuclear reactions involve huge amounts of energy? Are all forms of radiation dangerous? ### **Exit Skills** Students will: Differentiate between modern physics and classical physics. Differentiate between elements and isotopes Differentiate between atomic number and mass number Use different symbols for isotopes Predict the product of Alpha Decay Predict the product of Beta Decay Predict the product of Gamma Decay Predict the product of fission reaction Predict the product of fusion reaction Calculate the energy produced by fusion reaction Calculate the energy produced by fission reaction Compare special relativity with classical relativity Calculate time dilation Calculate length contraction Calculate mass increase Calculate relativistic energy by using E=mc2 **New Jersey Student Learning Standards (NJSLS-S)** NextGen Science Standards | SCI.9-12.HS-ETS1-4 | Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem. | |-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | SCI.9-12.HS-ETS1-1 | Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. | | SCI.9-12.HS-ETS1-3 | Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. | | SCI.9-12.HS-ETS1-2 | Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. | | SCI.9-12.HS-PS2-5 | Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. | | SCI.9-12.HS-PS2-1 | Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. | | SCI.9-12.HS-PS2-2 | Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. | | SCI.9-12.HS-PS2-4 | Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects. | | SCI.9-12.HS-PS2-3 | Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. | | 9-12.HS-ETS1-1.1.1 | Analyze complex real-world problems by specifying criteria and constraints for successful solutions. | | 9-12.HS-ETS1-4.4.1 | Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows— within and between systems at different scales. | | 9-12.HS-ETS1-4.5.1 | Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems. | | 9-12.HS-ETS1-3.6.1 | Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. | | 9-12.HS-ETS1-2.6.1 | Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. | | 9-12.HS-ETS1-1.ETS1.A.1 | Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. | | 9-12.HS-ETS1-1.ETS1.A.2 | Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. | | 9-12.HS-ETS1-3.ETS1.B.1 | When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. | | 9-12.HS-ETS1-4.ETS1.B.1 | Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most | simulations to test different ways of solving a problem or to see which one is most | | efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. | |-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 9-12.HS-PS2-4.1.1 | students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to reengineer and improve a designed system. | | 9-12.HS-PS2-5.2.1 | students understand that empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects. | | 9-12.HS-PS2-1.2.1 | students understand that empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects. | | 9-12.HS-PS2-3.2.1 | Systems can be designed to cause a desired effect. | | 9-12.HS-PS2-5.3.1 | Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. | | 9-12.HS-PS2-1.4.1 | Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. | | 9-12.HS-PS2-2.4.1 | When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. | | 9-12.HS-PS2-4.5.1 | Use mathematical representations of phenomena to describe explanations. | | 9-12.HS-PS2-2.5.1 | Use mathematical representations of phenomena to describe explanations. | | 9-12.HS-PS2-3.6.1 | Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. | | 9-12.HS-PS2-3.PS2.A.1 | If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. | | 9-12.HS-PS2-2.PS2.A.1 | Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. | | 9-12.HS-PS2-1.PS2.A.1 | Newton's second law accurately predicts changes in the motion of macroscopic objects. | | 9-12.HS-PS2-2.PS2.A.2 | If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. | | 9-12.HS-PS2-5.PS2.B.1 | Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. | | 9-12.HS-PS2-4.PS2.B.1 | Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. | | 9-12.HS-PS2-1.PS2.B.1 | Attraction and repulsion between electric charges at the atomic scale explain the | | | structure, properties, and transformations of matter, as well as the contact forces between material objects. | |------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 9-12.HS-PS2-3.PS2.B.1 | Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. | | 9-12.HS-PS2-4.PS2.B.2 | Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. | | 9-12.HS-PS2-5.PS3.A.1 | "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. | | 9-12.HS-PS2-3.ETS1.A.1 | Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. | | | Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force. | # **Interdisciplinary Connections** Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Please list all and any additional **Interdisciplinary Connections/Cross-Curricular** New Jersey Student Learning Standards that link to this unit, and which are not included in the NJSLS section above. | LA.RH.11-12.4 | Determine the meaning of words and phrases as they are used in a text, including analyzing how an author uses and refines the meaning of a key term over the course of a text (e.g., how Madison defines faction in Federalist No. 10). | |-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | LA.RH.11-12.7 | Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, qualitatively, as well as in words) in order to address a question or solve a problem. | | LA.RH.11-12.9 | Integrate information from diverse sources, both primary and secondary, into a coherent understanding of an idea or event, noting discrepancies among sources. | | LA.RH.11-12.10 | By the end of grade 12, read and comprehend history/social studies texts in the grades 11-CCR text complexity band independently and proficiently. | | LA.WHST.11-12.2.A | Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension. | | LA.WHST.11-12.2.B | Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic. | | LA.WHST.11-12.2.D | Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance | in a style that responds to the discipline and context as well as to the expertise of likely readers. LA.WHST.11-12.2.E Provide a concluding paragraph or section that supports the argument presented. LA.WHST.11-12.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. LA.WHST.11-12.6 Use technology, including the Internet, to produce, share, and update writing products in response to ongoing feedback, including new arguments or information. ## **Learning Objectives** Students will be able to; Describe the spectrum emitted by a hot body. Explain the photoelectric and Compton effects. Solve problems involving the photoelectric effect. Describe evidence of the wave nature of matter. Solve problems involving the de Broglie wavelength of particles. Describe the dual nature of waves and particles, and the importance of the Heisenberg uncertainty principle. Describe thermal energy and compare it to potential and kinetic energies. Distinguish temperature from thermal energy. State the first and second laws of thermodynamics. Distinguish between heat and work. Define entropy. Describe the structure of the nuclear atom. Compare and contrast continuous spectra and line emission spectra. Solve problems using orbital-radius and energy level equations. Describe the shortcomings of Bohr's atomic model. Describe the quantum model of the atom. Explain how a laser works. Describe the properties of laser light. Determine the number of neutrons and protons in nuclides. Define the binding energy of the nucleus. Relate the energy released in a nuclear reaction to the change in binding during the reaction. Describe three forms of radioactive decay. Solve nuclear equations. Calculate the amount remaining and the activity of radioactive material after a given time. Define nuclear fission and fusion. Describe the operation of a nuclear reactor. Describe the operation of particle accelerators and particle detectors. Describe the standard model of matter and explain the role of force carriers. Action Verbs: Below are examples of action verbs associated with each level of the Revised Bloom's Taxonomy. | Remember | Understand | Apply | Analyze | Evaluate | Create | |----------|-------------|------------|---------------|-----------|-----------| | Choose | Classify | Choose | Categorize | Appraise | Combine | | Describe | Defend | Dramatize | Classify | Judge | Compose | | Define | Demonstrate | Explain | Compare | Criticize | Construct | | Label | Distinguish | Generalize | Differentiate | Defend | Design | | List | Explain | Judge | Distinguish | Compare | Develop | | Locate | Express | Organize | Identify | Assess | Formulate | | Match | Extend | Paint | Infer | Conclude | Hypothesize | |-----------|---------------|-------------|--------------|-----------|-------------| | Memorize | Give Examples | Prepare | Point out | Contrast | Invent | | Name | Illustrate | Produce | Select | Critique | Make | | Omit | Indicate | Select | Subdivide | Determine | Originate | | Recite | Interrelate | Show | Survey | Grade | Organize | | Select | Interpret | Sketch | Arrange | Justify | Plan | | State | Infer | Solve | Breakdown | Measure | Produce | | Count | Match | Use | Combine | Rank | Role Play | | Draw | Paraphrase | Add | Detect | Rate | Drive | | Outline | Represent | Calculate | Diagram | Support | Devise | | Point | Restate | Change | Discriminate | Test | Generate | | Quote | Rewrite | Classify | Illustrate | | Integrate | | Recall | Select | Complete | Outline | | Prescribe | | Recognize | Show | Compute | Point out | | Propose | | Repeat | Summarize | Discover | Separate | | Reconstruct | | Reproduce | Tell | Divide | | | Revise | | | Translate | Examine | | | Rewrite | | | Associate | Graph | | | Transform | | | Compute | Interpolate | | | | | | Convert | Manipulate | | | | | | Discuss | Modify | | | | | | Estimate | Operate | | | | | | Extrapolate | Subtract | | | | | | Generalize | | | | | | | Predict | | | | | # **Suggested Activities & Best Practices** • What situations in ordinary life could help to master this unit? Construct a model of nuclear power plant Apply the half life lab using pennies Collect objects with different ages ### **Guidelines for Suggested Activities:** - Includes activities appropriate & specific to the development of the Unit; - Is comprised of the variety of learning activities that will be referenced in lesson plans, constructed/developed and instructionally delivered in the classroom; - Are authentic; - Recognizes the learning styles of the students; - Integrates problem- or project-based learning. # Assessment Evidence - Checking for Understanding (CFU) Student must be able to graph initial mass against time in a decay process (Formative) Student must be able to graph percentage by mass against time in a decay process (Formative) Common, Department Quarterly Benchmarks (Benchmark) Oncourse Assessment Tools (Formative) Unit Test/Quiz (Summative) # "Do Now/Exit Ticket" Activity (Formative) - Admit Tickets - Anticipation Guide - Common Benchmarks - Compare & Contrast - Create a Multimedia Poster - DBQ's - Define - Describe - Evaluate - Evaluation rubrics - Exit Tickets - Explaining - Fist- to-Five or Thumb-Ometer - Illustration - Journals - KWL Chart - Learning Center Activities - Multimedia Reports - Newspaper Headline - Outline - Question Stems - Quickwrite - Quizzes - Red Light, Green Light - Self- assessments - Socratic Seminar - Study Guide - Surveys - Teacher Observation Checklist - Think, Pair, Share - Think, Write, Pair, Share - Top 10 List - Unit review/Test prep - Unit tests - Web-Based Assessments • Written Reports | Primary | Resources | & | Materia | ls | |----------------|-----------|---|---------|----| |----------------|-----------|---|---------|----| Textbook: Conceptual Physics, Hewitt Internet Please list all district-provided Primary Resources & Materials and/or those outside that are accessed with district resources. # **Ancillary Resources** Teacher Prepared Materials Lab Materials Study Guide Materials United Streaming Videos The Physics Classroom: www.thephysicsclassroom.com STEM Lab Please list all additional resources that will be used to strengthen this unit's lessons. # **Technology Infusion** Students must be able to use virtual labs to calculate time dilation Students must be able to use virtual labs to calculate length contraction Students must be able to use virtual labs to calculate mass increase What **Technology Infusion** and/or strategies are integrated into this unit to enhance learning? Please list all hardware, software and strategies. Please find a technology pedagogy wheel for assistance while completing this section. ### Win 8.1 Apps/Tools Pedagogy Wheel **Podcasts** Photostory 3 Kid Story Builder Music Maker Jam Paint A Story Office 365 MS PowerPoint **Activities** Stack 'Em Up Blog Journal NgSquared Numbers Diagraming Physamajig Bing Search Documenting Mind mapping Xylophone 8 Commenting Action Verbs Word processing Recognise Social Networkin Describe Identify Recounting Design Construct Infer Retrieve Wikipedia Match Locate Skydrive List Manipulate Rate Lync Drawing Blogging Demo Use Opinion SkyMap Teach Record Diagraming Commenting Critique Evaluate Animating Voting Skype Share Draw Collaborate Journals Surveys Office 365 Simulate Assess Debate Quizzes Photography Puzzle Touch Survey Justify Create Deduce Movie Making Peer assessment Sequence Differentiate Construct Prioritise Easy QR Music Making Self Assessment Memorylage Examine Story Telling Debating Contrast Compare Scrapbooks Life Moments Collaging Outline Word Cloud Maker Graphing Voting Mindmapping Reading comprehension Peer Assessment Judging Spreadsheets Surveying Summarising Listening Mapping Comparing Where's Waldo? 830Nor365 MS Excel Office 365 Ted Talks Flipboard Nova Mindmapping Record Voice Pen # **Alignment to 21st Century Skills & Technology** Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Mastery and infusion of **21st Century Skills & Technology** and their Alignment to the core content areas is essential to student learning. The core content areas include: - English Language Arts; - Mathematics; - Science and Scientific Inquiry (Next Generation); - Social Studies, including American History, World History, Geography, Government and Civics, and Economics; - World languages; - Technology; - Visual and Performing Arts. | CRP.K-12.CRP8.1 | Career-ready individuals readily recognize problems in the workplace, understand the nature of the problem, and devise effective plans to solve the problem. They are aware of problems when they occur and take action quickly to address the problem; they thoughtfully investigate the root cause of the problem prior to introducing solutions. They carefully consider the options to solve the problem. Once a solution is agreed upon, they follow through to ensure the problem is solved, whether through their own actions or the actions of others. | |-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | CRP.K-12.CRP11.1 | Career-ready individuals find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. | | CRP.K-12.CRP12.1 | Career-ready individuals positively contribute to every team, whether formal or informal. They apply an awareness of cultural difference to avoid barriers to productive and positive interaction. They find ways to increase the engagement and contribution of all team members. They plan and facilitate effective team meetings. | | CAEP.9.2.12.C.3 | Identify transferable career skills and design alternate career plans. | | CAEP.9.2.12.C.7 | Examine the professional, legal, and ethical responsibilities for both employers and employees in the global workplace. | | TECH.8.1.12.A | Technology Operations and Concepts: Students demonstrate a sound understanding of technology concepts, systems and operations. | | TECH.8.1.12.A.3 | Collaborate in online courses, learning communities, social networks or virtual worlds to discuss a resolution to a problem or issue. | | TECH.8.1.12.A.CS1 | Understand and use technology systems. | | TECH.8.1.12.A.CS2 | Select and use applications effectively and productively. | | TECH.8.2.12.E.1 | Demonstrate an understanding of the problem-solving capacity of computers in our world. | # 21st Century Skills/Interdisciplinary Themes Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Please list only the 21st Century/Interdisciplinary Themes that will be incorporated into this unit. - Communication and Collaboration - Creativity and Innovation - · Critical thinking and Problem Solving - ICT (Information, Communications and Technology) Literacy - Information Literacy - · Life and Career Skills - Media Literacy ### **21st Century Skills** Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Please list only the 21st Century Skills that will be incorporated into this unit. - Civic Literacy - · Environmental Literacy - Financial, Economic, Business and Entrepreneurial Literacy - Global Awareness - · Health Literacy ### **Differentiation** Please remember: Effective educational Differentiation in a lesson lies within content, process, and/or product. Please identify the ones that will be employed in this unit. ### Differentiations: - Small group instruction - Small group assignments - Extra time to complete assignments - Pairing oral instruction with visuals - Repeat directions - Use manipulatives - Center-based instruction - Token economy - Study guides - · Teacher reads assessments allowed - Scheduled breaks - Rephrase written directions - Multisensory approaches - Additional time - Preview vocabulary - Preview content & concepts - Story guides - Behavior management plan - Highlight text - Student(s) work with assigned partner - Visual presentation - Assistive technology - Auditory presentations - Large print edition - Dictation to scribe - Small group setting ### **Hi-Prep Differentiations:** - Alternative formative and summative assessments - Choice boards - Games and tournaments - Group investigations - Guided Reading - Independent research and projects - Interest groups - Learning contracts - Leveled rubrics - Literature circles - Multiple intelligence options - Multiple texts - Personal agendas - Project-based learning - Problem-based learning - Stations/centers - Think-Tac-Toes - Tiered activities/assignments - Tiered products - Varying organizers for instructions ### **Lo-Prep Differentiations** - Choice of books or activities - Cubing activities - Exploration by interest - Flexible grouping - Goal setting with students - Jigsaw - Mini workshops to re-teach or extend skills - Open-ended activities - Think-Pair-Share - · Reading buddies - Varied journal prompts - Varied supplemental materials # **Special Education Learning (IEP's & 504's)** Please identify the Special Education Learning adaptations that will be employed in the unit, using the ones identified below. - Students must be able to make a model of nuclear power plant - printed copy of board work/notes provided - additional time for skill mastery - · assistive technology - behavior management plan - Center-Based Instruction - · check work frequently for understanding - · computer or electronic device utilizes - extended time on tests/ quizzes - · have student repeat directions to check for understanding - highlighted text visual presentation - modified assignment format - modified test content - modified test format - modified test length - multi-sensory presentation - multiple test sessions - preferential seating - · preview of content, concepts, and vocabulary - Provide modifications as dictated in the student's IEP/504 plan - reduced/shortened reading assignments - · Reduced/shortened written assignments - secure attention before giving instruction/directions - shortened assignments - · student working with an assigned partner - teacher initiated weekly assignment sheet - Use open book, study guides, test prototypes ## **English Language Learning (ELL)** Please identify the English Language Learning adaptations that will be employed in the unit, using the ones identified below. - Students are provided with glossary in their native language. - Spanish speaking students may utilize Spanish Edition of a Textbook - teaching key aspects of a topic. Eliminate nonessential information - using videos, illustrations, pictures, and drawings to explain or clarif - allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning; - allowing students to correct errors (looking for understanding) - allowing the use of note cards or open-book during testing - decreasing the amount of workpresented or required - having peers take notes or providing a copy of the teacher's notes - modifying tests to reflect selected objectives - providing study guides - reducing or omitting lengthy outside reading assignments - reducing the number of answer choices on a multiple choice test - tutoring by peers - using computer word processing spell check and grammar check features - using true/false, matching, or fill in the blank tests in lieu of essay tests ### **At Risk** Please identify Intervention Strategies that will be employed in the unit, using the ones identified below. - Student provided access to virtual labs, presentations, videos, and practice questions. - allowing students to correct errors (looking for understanding) - · teaching key aspects of a topic. Eliminate nonessential information - allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning - allowing students to select from given choices - allowing the use of note cards or open-book during testing - collaborating (general education teacher and specialist) to modify vocabulary, omit or modify items to reflect objectives for the student, eliminate sections of the test, and determine how the grade will be determined prior to giving the test. - · decreasing the amount of workpresented or required - having peers take notes or providing a copy of the teacher's notes - marking students' correct and acceptable work, not the mistakes - modifying tests to reflect selected objectives - · providing study guides - reducing or omitting lengthy outside reading assignments - reducing the number of answer choices on a multiple choice test - tutoring by peers - using authentic assessments with real-life problem-solving - using true/false, matching, or fill in the blank tests in lieu of essay tests - · using videos, illustrations, pictures, and drawings to explain or clarify # Talented and Gifted Learning (T&G) Please identify the **Talented and Gifted** adaptations that will be employed in the unit, using the ones identified below. - Students must be able to solve relativity problems. - Above grade level placement option for qualified students - · Advanced problem-solving - Allow students to work at a faster pace - Cluster grouping - · Complete activities aligned with above grade level text using Benchmark results - Create a blog or social media page about their unit - Create a plan to solve an issue presented in the class or in a text - Debate issues with research to support arguments - Flexible skill grouping within a class or across grade level for rigor - Higher order, critical & creative thinking skills, and discovery - Multi-disciplinary unit and/or project - Teacher-selected instructional strategies that are focused to provide challenge, engagement, and growth opportunities - Utilize exploratory connections to higher-grade concepts - Utilize project-based learning for greater depth of knowledge | Sample Lesson | |------------------------------------------------------------------------------------------| | Using the template below, please develop a Sample Lesson for the first unit only. | | | | | | | | Unit Name: | | | | NJSLS: | | Interdisciplinary Connection: | | Statement of Objective: | | Anticipatory Set/Do Now: | | Learning Activity: | | Student Assessment/CFU's: | | Materials: | | 21st Century Themes and Skills: | | Differentiation/Modifications: | | Integration of Technology: | | |