Kinematic Equations for Linear Motion

 (For constant acceleration ONLY)** To select the appropriate equation to solve a particular problem:

1) List what quantities are given - (will be 3)
2) List what is being asked for - (will be 1).
3) Find the equation in the table that contains all 4 involved quantities.

Equation	Involved Quantities	Unneeded Quantity
1) $v_{f}=v_{i}+a t$	v_{i}, v_{f}, a, t	Δx
2) $v_{f}^{2}=v_{i}^{2}+2 a \Delta x$	$\Delta x, v_{f}, v_{i}, a$	t
3) $\Delta x=v_{i} t+\frac{1}{2} a t^{2}$	$\Delta x, v_{i}, a, t$	v_{f}
4) $\Delta x=\frac{1}{2}\left(v_{f}+v_{i}\right) t$	$\Delta x, v_{f}, v_{i}, t$	a
5) $\Delta x=v_{f} t-\frac{1}{2} a t^{2}$	$\Delta x, v_{f}, a, t$	v_{i}

$* * \Delta x=\left(x_{f}-x_{i}\right)$
** These equations work for motion in ANY one direction
** If Δx also represents the total distance in only 1 direction, you can replace $\Delta \boldsymbol{x}$ with d (for distance) and then think of v_{f} and v_{i} in terms of speed rather than velocity

