Kinematic Equations for Linear Motion (For constant acceleration ONLY)

****** To select the appropriate equation to solve a particular problem:

- 1) List what quantities are given (*will be* 3)
- 2) List what is being asked for (*will be* 1).
- 3) Find the equation in the table that contains all 4 involved quantities.

Equation	Involved Quantities	Unneeded Quantity
1) $v_f = v_i + at$	v_i, v_f, a, t	Δx
$2) v_f^2 = v_i^2 + 2a\Delta x$	$\Delta x, v_f, v_i, a$	t
$3) \Delta x = v_i t + \frac{1}{2}at^2$	$\Delta x, v_i, a, t$	\mathcal{V}_{f}
$4) \Delta x = \frac{1}{2} (v_f + v_i) t$	$\Delta x, v_f, v_i, t$	а
$5) \Delta x = v_f t - \frac{1}{2}at^2$	$\Delta x, v_f, a, t$	\mathcal{V}_i

** $\Delta x = (x_f - x_i)$

** These equations work for motion in ANY one direction

** If Δx also represents the *total* distance in *only* 1 direction, you can replace Δx with *d* (for distance) and then think of v_f and v_i in terms of speed rather than velocity