Unit 3: Simple Harmonic Motion, Vibrations, and Waves/Electromagnetic Radiation and the Wave Nature of Light (Physical Science, Engineering Design) Copied from: Intro. to Engineering (Physical Science Content Area: Science Course(s): Intro to Engineering Time Period: Length: **20 Days** Status: **Published** **Title Section** # **Department of Curriculum and Instruction** **Belleville Public Schools** **Curriculum Guide** Intro to Engineering, Unit 3 Simple Harmonic Motion, Vibrations, and Waves/Electromagnetic Radiation and Wave Nature of Light #### **Belleville Board of Education** #### **102 Passaic Avenue** ### Belleville, NJ 07109 Prepared by: Recep Balki Dr. Richard Tomko, Ph.D., M.J., Superintendent of Schools Ms. LucyAnn Demikoff, Director of Curriculum and Instruction K-12 Ms. Nicole Shanklin, Director of Elementary Education K-8, ESL Coordinator K-12 Mr. George Droste, Director of Secondary Education Board Approved: September 23, 2019 #### **Unit Overview** In this unit, students will investigate the nature of vibrational motion in the form of waves and wave phenomena. This unit will build on prior knowledge gained in the previous unit on motion by analyzing simple harmonic motion as a natural outgrowth of prior knowledge. Students will examine systems such as a pendulum and a mass on a spring, and will be able to describe how simple harmonic motion relates to wave-like behavior. Building on this knowledge with specialized vocabulary, students will be able to determine how a wave moves through space, what the various forms of waves are, and how those waves can be generated. Ideas of period, frequency, wavelength, and wave speed will be crucial to this development. In addition, students will examine the nature of sound waves, and how sound propagates through space via a medium. Students will be able to describe and explain the nature of sound and the human perception of sound through various phenomena such as reverberation, echo, resonance, pitch, harmonics, timbre, and loudness. Finally, students will investigate the nature of light as a wave and how it moves through space. Students will be able to describe and explain the wave theory of light, the ray model of light, the nature of color and pigment, and various light phenomena such as Doppler Effect and reflection in mirrors. | Enduring Understanding | |----------------------------------------------------------------------------------------------------------------------------------------------------------------| | | | - A periodic wave is one that repeats as a function of both time and position and can be described by its amplitude, frequency, wavelength, speed, and energy. | | - Only waves exhibit interference and diffraction | | - Interference and superposition lead to standing waves and beats. | | | | | | | | | | | | | | | | | | | | | | | | | | Essential Questions What are the different ways energy can be transmitted through space? | How do physicists describe wave behavior, specifically with respect to sound and light? Where do waves come from? How do you know that waves carry energy? Explain how knowledge of waves helps us understand our world better and improve the quality of our lives? Why do sound waves need a medium through which to travel? What are the differences between infrasonic, audible and ultrasonic sound waves? ## **Exit Skills** Identify how waves transfer energy without transferring matter. Contrast transverse and longitudinal waves. Relate wave speed, wavelength, and frequency. Apply the principle of superposition to the phenomenon of interference. Demonstrate the properties that sound shares with other waves. Relate the physical properties of sound waves to our perception of sound. Identify some applications of the Doppler Effect. Describe the origin of sound. Demonstrate an understanding of resonance, especially as applied to air columns and strings. Explain why there are variations in sound among instruments and among voices. Predict the effect of distance on sound intensity. Solve problems involving the speed of sound. Explain phenomena such as polarization and the Doppler Effect. Explain phenomena such as sonic boom. # NextGen Science Standards | SCI.9-12.HS-ETS1-4 | Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem. | |-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | SCI.9-12.HS-ETS1-2 | Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. | | SCI.9-12.HS-ETS1-1 | Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. | | SCI.9-12.HS-ETS1-3 | Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. | | SCI.9-12.HS-PS2-5 | Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. | | SCI.9-12.HS-PS2-4 | Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects. | | SCI.9-12.HS-PS2-3 | Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. | | SCI.9-12.HS-PS2-2 | Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. | | SCI.9-12.HS-PS2-1 | Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. | | 9-12.HS-ETS1-1.1.1 | Analyze complex real-world problems by specifying criteria and constraints for successful solutions. | | 9-12.HS-ETS1-4.4.1 | Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. | | 9-12.HS-ETS1-4.5.1 | Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems. | | 9-12.HS-ETS1-2.6.1 | Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. | | 9-12.HS-ETS1-1.ETS1.A.1 | Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. | | 9-12.HS-ETS1-1.ETS1.A.2 | Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. | | 9-12.HS-ETS1-3.ETS1.B.1 | When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and | environmental impacts. 9-12.HS-ETS1-4.ETS1.B.1 Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. 9-12.HS-ETS1-2.ETS1.C.1 Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. 9-12.HS-PS2-4.1.1 students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to reengineer and improve a designed system. students understand that empirical evidence is required to differentiate between cause 9-12.HS-PS2-1.2.1 and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects. 9-12.HS-PS2-5.2.1 students understand that empirical evidence is required to differentiate between cause and correlation and to make claims about specific causes and effects. They suggest cause and effect relationships to explain and predict behaviors in complex natural and designed systems. They also propose causal relationships by examining what is known about smaller scale mechanisms within the system. They recognize changes in systems may have various causes that may not have equal effects. Plan and conduct an investigation individually and collaboratively to produce data to serve 9-12.HS-PS2-5.3.1 as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. 9-12.HS-PS2-1.4.1 Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. 9-12.HS-PS2-2.4.1 When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. 9-12.HS-PS2-2.5.1 Use mathematical representations of phenomena to describe explanations. 9-12.HS-PS2-4.5.1 Use mathematical representations of phenomena to describe explanations. 9-12.HS-PS2-3.6.1 Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. 9-12.HS-PS2-3.PS2.A.1 If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. 9-12.HS-PS2-1.PS2.A.1 Newton's second law accurately predicts changes in the motion of macroscopic objects. 9-12.HS-PS2-2.PS2.A.1 Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. 9-12.HS-PS2-2.PS2.A.2 If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. 9-12.HS-PS2-4.PS2.B.1 Newton's law of universal gravitation and Coulomb's law provide the mathematical | | models to describe and predict the effects of gravitational and electrostatic forces between distant objects. | |------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 9-12.HS-PS2-5.PS2.B.1 | Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. | | 9-12.HS-PS2-3.PS2.B.1 | Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. | | 9-12.HS-PS2-1.PS2.B.1 | Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. | | 9-12.HS-PS2-4.PS2.B.2 | Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. | | 9-12.HS-PS2-5.PS3.A.1 | "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. | | 9-12.HS-PS2-3.ETS1.C.1 | Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. | | | Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force. | Interdisciplinary Connections Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Please list all and any additional Interdisciplinary Connections/Cross-Curricular New Jersey Student Learning Standards that link to this unit, and which are not included in the NJSLS section above. | LA.RH.11-12.4 | Determine the meaning of words and phrases as they are used in a text, including analyzing how an author uses and refines the meaning of a key term over the course of a text (e.g., how Madison defines faction in Federalist No. 10). | |-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | LA.RH.11-12.7 | Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, qualitatively, as well as in words) in order to address a question or solve a problem. | | LA.RH.11-12.9 | Integrate information from diverse sources, both primary and secondary, into a coherent understanding of an idea or event, noting discrepancies among sources. | | LA.RH.11-12.10 | By the end of grade 12, read and comprehend history/social studies texts in the grades 11-CCR text complexity band independently and proficiently. | | LA.WHST.11-12.2.A | Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting | (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding | | comprehension. | |-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | LA.WHST.11-12.2.B | Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic. | | LA.WHST.11-12.2.D | Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers. | | LA.WHST.11-12.2.E | Provide a concluding paragraph or section that supports the argument presented. | | LA.WHST.11-12.4 | Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience. | | LA.WHST.11-12.6 | Use technology, including the Internet, to produce, share, and update writing products in response to ongoing feedback, including new arguments or information. | # **Learning Objectives** ### Students will be able to... Compare simple harmonic motion and the motion of a pendulum. Describe the force in an elastic spring. Determine the energy stored in an elastic spring. Identify how waves transfer energy without transferring matter. Relate wave speed, wavelength, and frequency. Contrast transverse and longitudinal waves. Relate a wave's speed to the medium and refracted at boundaries between media. Apply the principle of superposition to the phenomenon of interference. Demonstrate the properties that sound shares with other waves. Relate the physical properties of sound waves to our perception of sound. Identify some applications of the Doppler Effect. Describe the origin of sound. Demonstrate an understanding of resonance, especially as applied to air columns and strings. Explain why there are variations in sound among instruments and among voices. Develop the ray model of light. Solve problems involving the speed of light. Describe how diffraction demonstrates that light is a wave. Predict the effect of mixing colors of light and pigments. Explain phenomena such as the Doppler Effect. Action Verbs: Below are examples of action verbs associated with each level of the Revised Bloom's Taxonomy. | Remember | Understand | Apply | Analyze | Evaluate | Create | |----------|---------------|------------|---------------|-----------|-------------| | Choose | Classify | Choose | Categorize | Appraise | Combine | | Describe | Defend | Dramatize | Classify | Judge | Compose | | Define | Demonstrate | Explain | Compare | Criticize | Construct | | Label | Distinguish | Generalize | Differentiate | Defend | Design | | List | Explain | Judge | Distinguish | Compare | Develop | | Locate | Express | Organize | Identify | Assess | Formulate | | Match | Extend | Paint | Infer | Conclude | Hypothesize | | Memorize | Give Examples | Prepare | Point out | Contrast | Invent | | Name | Illustrate | Produce | Select | Critique | Make | | Omit | Indicate | Select | Subdivide | Determine | Originate | | Recite | Interrelate | Show | Survey | Grade | Organize | | Select | Interpret | Sketch | Arrange | Justify | Plan | |-----------|-------------|-------------|--------------|---------|-------------| | State | Infer | Solve | Breakdown | Measure | Produce | | Count | Match | Use | Combine | Rank | Role Play | | Draw | Paraphrase | Add | Detect | Rate | Drive | | Outline | Represent | Calculate | Diagram | Support | Devise | | Point | Restate | Change | Discriminate | Test | Generate | | Quote | Rewrite | Classify | Illustrate | | Integrate | | Recall | Select | Complete | Outline | | Prescribe | | Recognize | Show | Compute | Point out | | Propose | | Repeat | Summarize | Discover | Separate | | Reconstruct | | Reproduce | Tell | Divide | | | Revise | | | Translate | Examine | | | Rewrite | | | Associate | Graph | | | Transform | | | Compute | Interpolate | | | | | | Convert | Manipulate | | | | | | Discuss | Modify | | | | | | Estimate | Operate | | | | | | Extrapolate | Subtract | | | | | | Generalize | | | | | | | Predict | | | | | # **Suggested Activities & Best Practices** • What situations in ordinary life could help to master this unit? Calculating period and frequency of a pendulum Pendulum Lab; Length vs period Pendulum Lab; Amplitude vs period Pendulum Lab; Mass vs period Measure distance of propagation of different types of sound Verify Doppler Effect #### **Guidelines for Suggested Activities:** - Includes activities appropriate & specific to the development of the Unit; - Is comprised of the variety of learning activities that will be referenced in lesson plans, constructed/developed and instructionally delivered in the classroom; - Are authentic; - Recognizes the learning styles of the students; - Integrates problem- or project-based learning. # Assessment Evidence - Checking for Understanding (CFU) Student must be able to graph fundamental quantities; wavelength and amplitude (Formative) Student must be able to graph fundamental quantities; wavelength and frequency (Formative) Student must be able to graph fundamental quantities; wavelength and period (Formative) Student must be able to graph fundamental quantities; intensity and distance of a sound wave (Formative) # Common, Department Quarterly Benchmarks (Benchmark) Oncourse Assessment Tools (Formative) Unit Test/Quiz (Summative) "Do Now/Exit Ticket" Activity (Formative) - Admit Tickets - Anticipation Guide - Common Benchmarks - Compare & Contrast - Create a Multimedia Poster - DBQ's - Define - Describe - Evaluate - Evaluation rubrics - Exit Tickets - Explaining - Fist- to-Five or Thumb-Ometer - Illustration - Journals - KWL Chart - Learning Center Activities - Multimedia Reports - Newspaper Headline - Outline - Question Stems - Quickwrite - Quizzes - Red Light, Green Light - Self- assessments - Socratic Seminar - Study Guide - Surveys - Teacher Observation Checklist - Think, Pair, Share - Think, Write, Pair, Share - Top 10 List - Unit review/Test prep - Unit tests - Web-Based Assessments - Written Reports | Primary | Resources | & Materials | |----------------|------------------|-------------| |----------------|------------------|-------------| Textbook: Conceptual Physics, Hewitt Internet Please list all district-provided Primary Resources & Materials and/or those outside that are accessed with district resources. # **Ancillary Resources** Teacher Prepared Materials Lab Materials Study Guide Materials United Streaming Videos The Physics Classroom: www.thephysicsclassroom.com STEM Lab Please list all additional resources that will be used to strengthen this unit's lessons. # **Technology Infusion** Students must be able to use the stopwatch to measure the period of a wave Students must be able to use the stopwatch to measure the frequency of a wave What **Technology Infusion** and/or strategies are integrated into this unit to enhance learning? Please list all hardware, software and strategies. Please find a technology pedagogy wheel for assistance while completing this section. #### Win 8.1 Apps/Tools Pedagogy Wheel **Podcasts** Photostory 3 Kid Story Builder Music Maker Jam Paint A Story Office 365 MS PowerPoint vities Stack 'Em Up Blog Journal NgSquared Numbers Diagraming Physamajig Bing Search Documenting Mind mapping Xylophone 8 Commenting n Verbs Word processing Recognise Social Networkin Describe Identify Recounting t Infer Wikipedia Match Locate Skydrive Manipulate List Rate Lync Drawing Blogging Demo Use Opinion SkyMap Teach Record Commenting Diagraming Evaluate Critique Animating Share Draw Voting Skype Collaborate Journals Surveys Office 365 Simulate Assess Debate Photography Quizzes Puzzle Touch Create Deduce Movie Making Peer assessment Infer No. William Prioritise Sequence Differentiate Construct Easy QR Q Music Making Self Assessment Memorylage Examine Story Telling Debating Contrast Scrapbooks Life Moments Collaging Outline Word Cloud Maker Graphing Voting Mindmapping Reading comprehension Peer Assessment Judging Spreadsheets Surveying Summarising Listening Mapping Comparing Where's Waldo? MS Excel Office 365 Ted Talks Flipboard Record Voice Pen Nova Mindmapping | TECH.8.1.12.A.1 | Create a personal digital portfolio which reflects personal and academic interests, achievements, and career aspirations by using a variety of digital tools and resources. | |-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | TECH.8.1.12.B.2 | Apply previous content knowledge by creating and piloting a digital learning game or tutorial. | | TECH.8.1.12.C.CS4 | Contribute to project teams to produce original works or solve problems. | | TECH.8.1.12.D.4 | Research and understand the positive and negative impact of one's digital footprint. | # **Alignment to 21st Century Skills & Technology** Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Mastery and infusion of 21st Century Skills & Technology and their Alignment to the core content areas is essential to student learning. The core content areas include: - English Language Arts; - Mathematics; - Science and Scientific Inquiry (Next Generation); - Social Studies, including American History, World History, Geography, Government and Civics, and Economics; - World languages; - Technology; - Visual and Performing Arts. | CRP.K-12.CRP1.1 | Career-ready individuals understand the obligations and responsibilities of being a member of a community, and they demonstrate this understanding every day through their interactions with others. They are conscientious of the impacts of their decisions on others and the environment around them. They think about the near-term and long-term consequences of their actions and seek to act in ways that contribute to the betterment of their teams, families, community and workplace. They are reliable and consistent in going beyond the minimum expectation and in participating in activities that serve the greater good. | |------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | CRP.K-12.CRP7.1 | Career-ready individuals are discerning in accepting and using new information to make decisions, change practices or inform strategies. They use reliable research process to search for new information. They evaluate the validity of sources when considering the use and adoption of external information or practices in their workplace situation. | | CRP.K-12.CRP11.1 | Career-ready individuals find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks. | | CAEP.9.2.12.C.1 | Review career goals and determine steps necessary for attainment. | | CAEP.9.2.12.C.4 | Analyze how economic conditions and societal changes influence employment trends and | | f | | t | | r۵ | ed | hi | ra | ti | ^ | n | | |---|---|---|---|-----|----|----|-----|----|----|---|--| | 1 | u | U | u | . – | | ш | เ.ส | | ., | | | | CAEP.9.2.12.C.8 | Assess the impact of litigation and court decisions on employment laws and practices. | |-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | TECH.8.1.12.D.2 | Evaluate consequences of unauthorized electronic access (e.g., hacking) and disclosure, and on dissemination of personal information. | | TECH.8.1.12.E.1 | Produce a position statement about a real world problem by developing a systematic plan of investigation with peers and experts synthesizing information from multiple sources. | # **21st Century Skills/Interdisciplinary Themes** Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Please list only the 21st Century/Interdisciplinary Themes that will be incorporated into this unit. - Communication and Collaboration - · Creativity and Innovation - · Critical thinking and Problem Solving - ICT (Information, Communications and Technology) Literacy - Information Literacy - Life and Career Skills - Media Literacy # **21st Century Skills** Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Please list only the 21st Century Skills that will be incorporated into this unit. - Civic Literacy - Environmental Literacy - Financial, Economic, Business and Entrepreneurial Literacy - Global Awareness - Health Literacy # **Differentiation** Please remember: Effective educational **Differentiation** in a lesson lies within content, process, and/or product. Please identify the ones that will be employed in this unit. #### Differentiations: - Small group instruction - Small group assignments - Extra time to complete assignments - Pairing oral instruction with visuals - Repeat directions - Use manipulatives - Center-based instruction - Token economy - Study guides - Teacher reads assessments allowed - Scheduled breaks - Rephrase written directions - Multisensory approaches - Additional time - Preview vocabulary - Preview content & concepts - Story guides - Behavior management plan - Highlight text - Student(s) work with assigned partner - Visual presentation - Assistive technology - Auditory presentations - Large print edition - Dictation to scribe - Small group setting #### **Hi-Prep Differentiations:** - Alternative formative and summative assessments - Choice boards - Games and tournaments - Group investigations - Guided Reading - Independent research and projects - Interest groups - Learning contracts - Leveled rubrics - Literature circles - Multiple intelligence options - Multiple texts - Personal agendas - Project-based learning - Problem-based learning - Stations/centers - Think-Tac-Toes - Tiered activities/assignments - Tiered products - Varying organizers for instructions #### **Lo-Prep Differentiations** - Choice of books or activities - Cubing activities - Exploration by interest - Flexible grouping - Goal setting with students - Jigsav - Mini workshops to re-teach or extend skills - Open-ended activities - Think-Pair-Share - Reading buddies - Varied journal prompts - Varied supplemental materials # **Special Education Learning (IEP's & 504's)** Please identify the Special Education Learning adaptations that will be employed in the unit, using the ones identified below. - Students must be able to make wave models with sticks and gummy bears. - printed copy of board work/notes provided - · additional time for skill mastery - · assistive technology - · behavior management plan - Center-Based Instruction - check work frequently for understanding - computer or electronic device utilizes - extended time on tests/ quizzes - · have student repeat directions to check for understanding - highlighted text visual presentation - modified assignment format - modified test content - · modified test format - · modified test length - multi-sensory presentation - multiple test sessions - preferential seating - preview of content, concepts, and vocabulary - Provide modifications as dictated in the student's IEP/504 plan - reduced/shortened reading assignments - Reduced/shortened written assignments - secure attention before giving instruction/directions - · shortened assignments - · student working with an assigned partner - teacher initiated weekly assignment sheet - · Use open book, study guides, test prototypes # **English Language Learning (ELL)** Please identify the English Language Learning adaptations that will be employed in the unit, using the ones identified below. - Students are provided with glossary in their native language. - Spanish speaking students may utilize Spanish Edition of a Textbook - teaching key aspects of a topic. Eliminate nonessential information - · using videos, illustrations, pictures, and drawings to explain or clarif - allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning; - allowing students to correct errors (looking for understanding) - allowing the use of note cards or open-book during testing - decreasing the amount of workpresented or required - having peers take notes or providing a copy of the teacher's notes - · modifying tests to reflect selected objectives - providing study guides - · reducing or omitting lengthy outside reading assignments - · reducing the number of answer choices on a multiple choice test - tutoring by peers - using computer word processing spell check and grammar check features - using true/false, matching, or fill in the blank tests in lieu of essay tests #### At Risk Please identify Intervention Strategies that will be employed in the unit, using the ones identified below. - Student provided access to virtual labs, presentations, videos, and practice questions. - allowing students to correct errors (looking for understanding) - teaching key aspects of a topic. Eliminate nonessential information - allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning - allowing students to select from given choices - allowing the use of note cards or open-book during testing - collaborating (general education teacher and specialist) to modify vocabulary, omit or modify items to reflect objectives for the student, eliminate sections of the test, and determine how the grade will be determined prior to giving the test. - · decreasing the amount of workpresented or required - having peers take notes or providing a copy of the teacher's notes - marking students' correct and acceptable work, not the mistakes - modifying tests to reflect selected objectives - providing study guides - · reducing or omitting lengthy outside reading assignments - reducing the number of answer choices on a multiple choice test - tutoring by peers - using authentic assessments with real-life problem-solving - using true/false, matching, or fill in the blank tests in lieu of essay tests - using videos, illustrations, pictures, and drawings to explain or clarify # Talented and Gifted Learning (T&G) Please identify the **Talented and Gifted** adaptations that will be employed in the unit, using the ones identified below. - Students must be able to solve challenging algebra based problems. - Above grade level placement option for qualified students - · Advanced problem-solving - Allow students to work at a faster pace - Cluster grouping - · Complete activities aligned with above grade level text using Benchmark results - · Create a blog or social media page about their unit - Create a plan to solve an issue presented in the class or in a text - Debate issues with research to support arguments - Flexible skill grouping within a class or across grade level for rigor - Higher order, critical & creative thinking skills, and discovery - Multi-disciplinary unit and/or project - Teacher-selected instructional strategies that are focused to provide challenge, engagement, and growth opportunities - Utilize exploratory connections to higher-grade concepts - Utilize project-based learning for greater depth of knowledge | Sample Lesson | |------------------------------------------------------------------------------------------| | Using the template below, please develop a Sample Lesson for the first unit only. | | | | | | | | Unit Name: | | | | NJSLS: | | | | Interdisciplinary Connection: | | Statement of Objective: | | Anticipatory Set/Do Now: | | Learning Activity: | | Student Assessment/CFU's: | | Materials: | | 21st Century Themes and Skills: | | Differentiation/Modifications: | | Integration of Technology: | | |