AP Chemistry Unit 4: Gasses and Thermochemistry Copied from: Chemistry AP, Copied on: 02/21/22

Content Area: Science
Course(s): Sample Course
Time Period: November
Length: 4 Weeks
Status: Published

Title Section

Department of Curriculum and Instruction

Belleville Public Schools

Curriculum Guide

AP Chemistry 11, 12

Belleville Board of Education

102 Passaic Avenue

Belleville, NJ 07109

Prepared by: Joy Elaine Alfano, Ph.D adapted from Pietro Doldi 2010

Dr. Richard Tomko, Superintendent of Schools

Mr. Thomas D'Elia, Director of Curriculum and Instruction

Ms. Diana Kelleher, District Supervisor of ELA/Social Studies

Mr. George Droste, District Supervisor of Math/Science

Board Approved: OCTOBER 17, 2016

Unit Overview

- Topics:
- 1. Laws of gases.
- 2. Stoichiometry of gases.
- 3. Heat and temperature.
- 4. Combustion and formation reactions.
- 5. Enthalpy.
- 6. Hess's Law.
- 7. Calorimeters.

NJSLS

SCI.HS-ETS1-1 Analyze a major global challenge to specify qualitative and quantitative criteria and

constraints for solutions that account for societal needs and wants.

SCI.HS-ETS1-2 Design a solution to a complex real-world problem by breaking it down into smaller, more

manageable problems that can be solved through engineering.

SCI.HS-ETS1-4	Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.
SCI.HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
SCI.HS-PS1-5	Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
SCI.HS-PS1-2	Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
SCI.HS-PS1-7	Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.
SCI.HS-PS1-3	Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.
SCI.HS-PS1-6	Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.

Exit Skills

- 1. convert between Celsius, Fahrenheit, and Kelvin temperature scales
- 2. apply the gas laws to relations between the pressure, temperature, and volume of any amount of an idea 1 gas utilizing the values and meanings of standard temperature and pressure (STP)
- 3. perform stoichiometric calculations using standard molar volume
- 4. calculate the volume of dry and wet gases
- 5. apply the kinetic molecular theory of gases relates the absolute temperature of a gas to the average kinetic energy
 - of its molecules or atoms 6. calculate the molar mass of a gas from the rate of diffusion
 - 7. describe temperature and heat flow in terms of the motion of molecules (or atoms)
 - 8. Determine exothermic (release thermal energy) or endothermic (absorb thermal energy)
- 9. energy is released when a material condenses or freezes and energy is absorbed when a material melts or evaporates
- 10. calculate the temperature change when heat is absorbed/released
- 11. apply Hess's law
- 12. Student know how to examine the information from heat of combustion and formation

Enduring Understanding

- 1. representations and models can be used to communicate scientific phenomena and solve scientific problems
- 2. mathematics, appropriately applied, can be used to explain phenomena.
- 3. scientific questioning can be used to extend thinking or to guide investigations within the context of the AP course.
- 4. planning and implementation of data collection strategies in relation to a particular scientific question, leads to supported conclusions and problem solutions

- 5. proper data analysis and evaluation of evidence is imperative in scientific studies.
- 6. scientific explanations and theories must be used as guiding principles for scientific investigations
- 7. connections of knowledge across various scales, concepts, and representations in and across domains leads to comprehensive responses to problems in science.

Essential Questions

- 1. To what extent does a mathematical model represent natural phenomena?
- 2. What are the limitations when modeling the motion of gases as individual particles?
- 3. Why do some packaged foods have different cooking instructions for different locations?

Learning Objectives

- 1. apply the Simple Gas Laws and Ideal Gas Law to solve problems
- 2. relate Dalton's Law, and Graham's Law to analytical chemistry
- 3. ntegrate and apply stoichiometric principals to the Law of gases
- 4. justify the changes a gas goes through using the Kinetic Molecular Theory
- 5. identify heat as reactant/product of a physical and chemical change
- 6. amount of heat produced/absorbed by formation and combustion reactions
- 7. compare and contrast the amount of heat with the change of temperature
- 8. compare the amount of heat with the enthalpy
- 9. measure the heat of reaction using a calorimeter
- 10. calculate the heat of reaction using Hess's law
- 11. justify the stability of compounds using the enthalpies of formation

Interdisciplinary Connections

Please list all and any cross-curricular content standards that link to this Unit.

MA.A-SSE.A.1	Interpret expressions that represent a quantity in terms of its context.
LA.RH.11-12.1	Accurately cite strong and thorough textual evidence, (e.g., via discussion, written response, etc.), to support analysis of primary and secondary sources, connecting insights gained from specific details to develop an understanding of the text as a whole.
LA.RH.11-12.2	Determine the theme, central ideas, information and/or perspective(s) presented in a primary or secondary source; provide an accurate summary of how key events, ideas and/or author's perspective(s) develop over the course of the text.
LA.RH.11-12.3	Evaluate various perspectives for actions or events; determine which explanation best accords with textual evidence, acknowledging where the text leaves matters uncertain.

LA.RH.11-12.7	Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, qualitatively, as well as in words) in order to address a question or solve a problem.
LA.RH.11-12.8	Evaluate an author's claims, reasoning, and evidence by corroborating or challenging them with other sources.
LA.RH.11-12.9	Integrate information from diverse sources, both primary and secondary, into a coherent understanding of an idea or event, noting discrepancies among sources.
LA.RST.11-12.7	Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
LA.RST.11-12.8	Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
LA.RST.11-12.9	Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.
LA.WHST.11-12.1	Write arguments focused on discipline-specific content.
	Functions may be used to describe data; if the data suggest a linear relationship, the relationship can be modeled with a regression line, and its strength and direction can be expressed through a correlation coefficient.

for making informed decisions that take it into account.

Decisions or predictions are often based on data—numbers in context. These decisions or predictions would be easy if the data always sent a clear message, but the message is often obscured by variability. Statistics provides tools for describing variability in data and

Alignment to 21st Century Skills & Technology

Key SUBJECTS AND 21st CENTURY THEMES

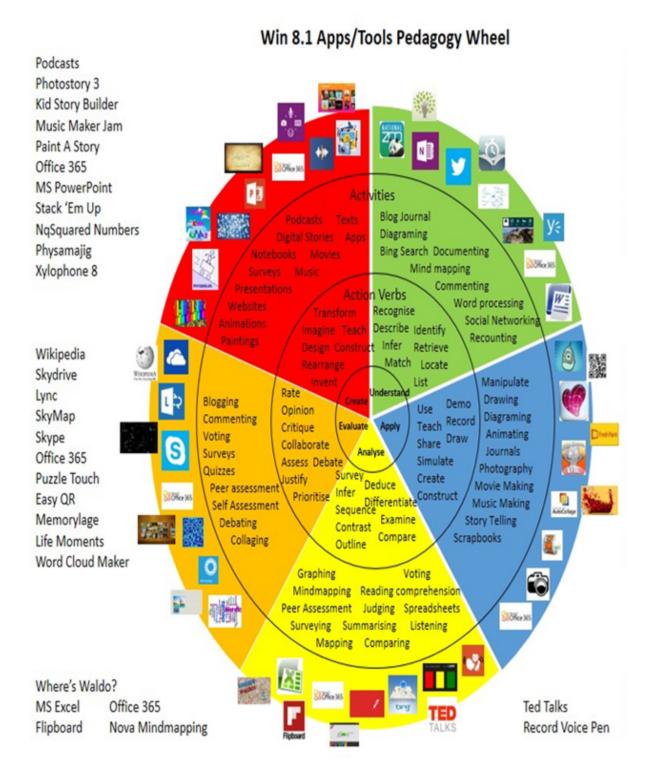
Mastery of key subjects and 21st century themes is essential for all students in the 21stcentury.

Key subjects include:

- English, reading or language arts
- World languages
- Arts
- Mathematics
- Economics
- Science
- Geography
- History
- Government and Civics

21st Century/Interdisciplinary Themes

Civic Literacy


- Environmental Literacy
- Financial, Economic, Business and Entrepreneurial Literacy
- Global Awareness
- Health Literacy

21st Century Skills

- Communication and Collaboration
- Creativity and Innovation
- Critical thinking and Problem Solving
- ICT (Information, Communications and Technology) Literacy
- Information Literacy
- Life and Career Skills
- Media Literacy

Technology Infusion

What technology can be used in this unit to enhance learning?

Differentiation

The basis of good differentiation in a lesson lies in differentiating by content, process, and/or product.

Resources:

• NJDOE: Instructional Supports and Scaffolds for Success in Implementing the Common Core State Standards http://www.state.nj.us/education/modelcurriculum/success/math/k2/

Special Education

- printed copy of board work/notes provided
- additional time for skill mastery
- assistive technology
- behavior management plan
- Center-Based Instruction
- check work frequently for understanding
- computer or electronic device utilizes
- extended time on tests/ guizzes
- have student repeat directions to check for understanding
- highlighted text visual presentation
- modified assignment format
- · modified test content
- modified test format
- · modified test length
- multi-sensory presentation
- multiple test sessions
- · preferential seating
- preview of content, concepts, and vocabulary
- reduced/shortened reading assignments
- Reduced/shortened written assignments
- secure attention before giving instruction/directions
- shortened assignments
- student working with an assigned partner
- teacher initiated weekly assignment sheet
- Use open book, study guides, test prototypes

ELL

• teaching key aspects of a topic. Eliminate nonessential information

- using videos, illustrations, pictures, and drawings to explain or clarif
- allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning;
- allowing students to correct errors (looking for understanding)
- allowing the use of note cards or open-book during testing
- decreasing the amount of workpresented or required
- having peers take notes or providing a copy of the teacher's notes
- · modifying tests to reflect selected objectives
- providing study guides
- · reducing or omitting lengthy outside reading assignments
- · reducing the number of answer choices on a multiple choice test
- · tutoring by peers
- using computer word processing spell check and grammar check features
- using true/false, matching, or fill in the blank tests in lieu of essay tests

Intervention Strategies

- allowing students to correct errors (looking for understanding)
- teaching key aspects of a topic. Eliminate nonessential information
- allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning
- allowing students to select from given choices
- allowing the use of note cards or open-book during testing
- collaborating (general education teacher and specialist) to modify vocabulary, omit or modify items to reflect objectives for the student, eliminate sections of the test, and determine how the grade will be determined prior to giving the test.
- decreasing the amount of workpresented or required
- having peers take notes or providing a copy of the teacher's notes
- · marking students' correct and acceptable work, not the mistakes
- modifying tests to reflect selected objectives
- providing study guides
- reducing or omitting lengthy outside reading assignments
- reducing the number of answer choices on a multiple choice test
- · tutoring by peers
- · using authentic assessments with real-life problem-solving
- using true/false, matching, or fill in the blank tests in lieu of essay tests
- using videos, illustrations, pictures, and drawings to explain or clarify

Evidence of Student Learning-CFU's

Please list ways educators may effectively check for understanding in this secion.

- Admit Tickets
- Anticipation Guide
- Common benchmarks
- Compare & Contrast
- Create a Multimedia Poster
- Define
- Describe
- Evaluate
- Evaluation rubrics
- Exit Tickets
- Explaining
- Fist- to-Five or Thumb-Ometer
- Illustration
- Journals
- KWL Chart
- Newspaper Headline
- Outline
- Question Stems
- Quickwrite
- Quizzes
- Red Light, Green Light
- · Self- assessments
- Socratic Seminar
- Study Guide
- Teacher Observation Checklist
- Think, Pair, Share
- Think, Write, Pair, Share
- Top 10 List
- Unit tests

Primary Resources

Please list all resources available to you that are located either within the district or that can be obtained by district resources.

Ancillary Resources

Please list ALL other resources available to strengthen your lesson.