# Unit 3: The Chemistry of Systems (Physical Science) Copied from: Chemistry (Physical Science), Copied on: 02/21/22 Content Area: Science Course(s): Science Chemistry Time Period: Length: **70 days** Status: **Published** **Title Section** # **Department of Curriculum and Instruction** **Belleville Public Schools** **Curriculum Guide** Academic Chemistry, Unit 3 The Chemistry of Systems ### **102 Passaic Avenue** ## Belleville, NJ 07109 ### Prepared by: Teacher, Michael Alfieri Dr. Richard Tomko, Ph.D., M.J., Superintendent of Schools Ms. LucyAnn Demikoff, Director of Curriculum and Instruction K-12 Ms. Nicole Shanklin, Director of Elementary Education K-8, ESL Coordinator K-12 Mr. George Droste, Director of Secondary Education Board Approved: September 23, 2019 ### **Unit Overview** - All substances are made of bonded elements, each with unique chemical and physical properties. - Substances consist of elements and compounds which chemically react to form new substances with properties that are different then their component substances. - Reactions result in property changes that can be examined to see the ways in which atoms from the original substances are combined and rearranged. - Chemical reactions can be classified to types. - The mass of reactants and products are mathematically related. ### **Enduring Understanding** - 1. Elements, ions, and molecules have common names along with IUPAC names which allows scientists to communicate internationally - 2. Chemical Equations are used to represent chemical reactions and show that mass can not be created nor destroyed - 3. There are many different types of chemical reactions that we observe in everyday life - 4. Chemists use the mole as a unit to specify the amount of representative particles that are present within a substance - 5. Mass and mole ratios between reactants and products determine the amount of product that can be produced # **Essential Questions** - 1. How do chemists name compounds systematically? - 2. In what way do atoms bond differently? - 3. How do different bonds lead to properties of matter on a macroscopic scale? - 4. Why does the mass of the reactants always equal to the mass of the products? - 5. How can we observe characteristics of a chemical reaction in order to classify chemical reactions? - 6. How do we quantify abstract things? ### Students will know: - 1. How to name elements and ions, ionic and molecular compounds, and acids - 2. How to represent and predict the type of chemical reaction - 3. How to balance a chemical reaction using coefficients - 4. How to solve mole conversion and mole relationship problems - 5. Use stoichiometry principles - 6. Prove the Law of Conservation of Matter - 7. Classify chemical reactions - 8. Use VSEPR theory to predict molecular shape ### Student Skills Check List: - Comparing and contrasting different chemical compounds and naming systems - Analyze a reactions based on predicted outcomes - Prove that a balanced reaction satisfies the law of conservation of mass - Construct a balanced equation - Apply dimensional analysis to stoichiometric equations # **New Jersey Student Learning Standards (NJSLS-S)** NextGen Science Standards | 9-12.HS-PS1-5.1.1 | students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to reengineer and improve a designed system. | |-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 9-12.HS-PS1-3.1.1 | students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to reengineer and improve a designed system. | | 9-12.HS-PS1-1.1.1 | students observe patterns in systems at different scales and cite patterns as empirical evidence for causality in supporting their explanations of phenomena. They recognize classifications or explanations used at one scale may not be useful or need revision using a different scale; thus requiring improved investigations and experiments. They use mathematical representations to identify certain patterns and analyze patterns of performance in order to reengineer and improve a designed system. | | 9-12.HS-PS1-4.2 | Modeling in 9–12 builds on K–8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds. | | 9-12.HS-PS1-4.2.1 | Develop a model based on evidence to illustrate the relationships between systems or between components of a system. | | 9-12.HS-PS1-1.2.1 | Use a model to predict the relationships between systems or between components of a system. | | 9-12.HS-PS1-3.3.1 | Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. | | 9-12.HS-PS1-4.5.1 | Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. | | 9-12.HS-PS1-5.6 | Constructing Explanations and Designing Solutions | | 9-12.HS-PS1-5.6.1 | Apply scientific principles and evidence to provide an explanation of phenomena and solve design problems, taking into account possible unanticipated effects. | | 9-12.HS-PS1-4.PS1.A.1 | A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart. | | 9-12.HS-PS1-3.PS1.A.1 | The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. | | 9-12.HS-PS1-1.PS1.A.1 | Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons. | | 9-12.HS-PS1-3.PS1.A.2 | Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. | | 9-12.HS-PS1-1.PS1.A.2 | The periodic table orders elements horizontally by the number of protons in the atom's nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. | | 9-12.HS-PS1-1.PS1.A.3 | Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. | | 9-12.HS-PS1-5.PS1.B | Chemical Reactions | 9-12.HS-PS1-5.PS1.B.1 Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy. > Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy. # **Interdisciplinary Connections** 9-12.HS-PS1-4.PS1.B.1 Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. MA.K-12.4 Model with mathematics. > Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. Define appropriate quantities for the purpose of descriptive modeling. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. Accurately cite strong and thorough evidence from the text to support analysis of science and technical texts, attending to precise details for explanations or descriptions. Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. MA.K-12.2 MA.N-Q.A.1 MA.N-Q.A.2 MA.N-Q.A.3 LA.RST.11-12.1 IA.WHST.11-12.2 | LA.WHST.11-12.2.A | Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension. | |-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | LA.WHST.11-12.2.B | Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience's knowledge of the topic. | | LA.WHST.11-12.5 | Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. | | LA.WHST.11-12.7 | Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. | # **Learning Objectives** - 1. Demonstrate knowledge of the correct name and formula for elements and compounds - 2. Apply naming in order to translate chemical formulas and equations from words to symbols - 3. Express chemical changes quantitatively by completing and balancing chemical equations - 4. Balance skeleton equations - 5. Classify chemical reactions of 5 basic reaction types and predict reactions based on the reaction type - 6. Demonstrate knowledge of the concepts and calculations involving the mole by using the formula mass - 7. Calculate the percentage composition of a given compound from data given and/or experimentally determined - 8. Extrapolate a empirical and molecular formula when given the percentage and mass composition - 9. Utilize learning to determine the quantity of product produced in a chemical reaction - 10. Determine the amount of reactants and products using Stoichiometry - 11. Predict limiting reaction, excess reactant, and theoretical yield **Action Verbs:** Below are examples of action verbs associated with each level of the Revised Bloom's Taxonomy. | Remember | Understand | Apply | Analyze | Evaluate | Create | |----------|---------------|------------|---------------|-----------|-------------| | Choose | Classify | Choose | Categorize | Appraise | Combine | | Describe | Defend | Dramatize | Classify | Judge | Compose | | Define | Demonstrate | Explain | Compare | Criticize | Construct | | Label | Distinguish | Generalize | Differentiate | Defend | Design | | List | Explain | Judge | Distinguish | Compare | Develop | | Locate | Express | Organize | Identify | Assess | Formulate | | Match | Extend | Paint | Infer | Conclude | Hypothesize | | Memorize | Give Examples | Prepare | Point out | Contrast | Invent | | Name | Illustrate | Produce | Select | Critique | Make | | Omit | Indicate | Select | Subdivide | Determine | Originate | | Recite | Interrelate | Show | Survey | Grade | Organize | | Select | Interpret | Sketch | Arrange | Justify | Plan | | State | Infer | Solve | Breakdown | Measure | Produce | | Count | Match | Use | Combine | Rank | Role Play | | Draw | Paraphrase | Add | Detect | Rate | Drive | | Outline | Represent | Calculate | Diagram | Support | Devise | | Point | Restate | Change | Discriminate | Test | Generate | | Quote | Rewrite | Classify | Illustrate | Integrate | |-----------|-------------|-------------|------------|-------------| | Recall | Select | Complete | Outline | Prescribe | | Recognize | Show | Compute | Point out | Propose | | Repeat | Summarize | Discover | Separate | Reconstruct | | Reproduce | Tell | Divide | | Revise | | | Translate | Examine | | Rewrite | | | Associate | Graph | | Transform | | | Compute | Interpolate | | | | | Convert | Manipulate | | | | | Discuss | Modify | | | | | Estimate | Operate | | | | | Extrapolate | Subtract | | | | | Generalize | | | | | | Predict | | | | ChemLab- Synthesize An Ionic Compound Data Analysis Lab - Interpret Data Molecular oragami Lab - Ancillary Chemlab- Develop an Activity Series Chemlab- Determine the Formula of a Hydrate Chemlab- Determine the Mole ratio # **Assessment Evidence - Checking for Understanding (CFU)** Ionic Compounds, Metals, and Covalent bondig test (Summative) Chemical Reactions test (Summative) The Mole Test (Summative) Stoichiometry test (Summative) Lab Journal (Alternate) Benchmark #3 (Benchmark) "Do Now/Exit Ticket" Activity (Formative) - Admit Tickets - Anticipation Guide - Common Benchmarks - Compare & Contrast - Create a Multimedia Poster - DBQ's - Define - Describe - Evaluate - Evaluation rubrics - Exit Tickets - Explaining - Fist- to-Five or Thumb-Ometer - Illustration - Journals - KWL Chart - Learning Center Activities - Multimedia Reports - Newspaper Headline - Outline - · Question Stems - Quickwrite - Quizzes - Red Light, Green Light - Self- assessments - Socratic Seminar - Study Guide - Surveys - Teacher Observation Checklist - Think, Pair, Share - Think, Write, Pair, Share - Top 10 List - Unit review/Test prep - Unit tests - Web-Based Assessments - Written Reports # **Primary Resources & Materials** Chemistry textbook and worksheet/lab CD (located in science service center) # **Ancillary Resources** - 1. Teacher and Publisher supplied power points, notes, laboratory guides, and worksheets - 2. Textbooks - 3. Resource Manuals - 4. Internet Resources - 5. Computer and smartboard Activities - Technology Infusion PHET chemical reaction simulation to determine the limiting reactant. - Youtube video on balancing chemical equations ### Win 8.1 Apps/Tools Pedagogy Wheel **Podcasts** Photostory 3 Kid Story Builder Music Maker Jam Paint A Story Office 365 MS PowerPoint **Activities** Stack 'Em Up Blog Journal NgSquared Numbers Diagraming Physamajig Bing Search Documenting Mind mapping Xylophone 8 Commenting Action Verbs Word processing Recognise Social Networkin Describe Identify Recounting Design Construct Infer Retrieve Wikipedia Match Locate Skydrive List Manipulate Rate Lync Drawing Blogging Demo Use Opinion SkyMap Teach Record Diagraming Commenting Critique Evaluate Animating Voting Skype Share Draw Collaborate Journals Surveys Office 365 Simulate Assess Debate Quizzes Photography Puzzle Touch Survey Justify Create Deduce Movie Making Peer assessment Sequence Differentiate Construct Prioritise Easy QR Music Making Self Assessment Memorylage Examine Story Telling Debating Contrast Compare Scrapbooks Life Moments Collaging Outline Word Cloud Maker Graphing Voting Mindmapping Reading comprehension Peer Assessment Judging Spreadsheets Surveying Summarising Listening Mapping Comparing Where's Waldo? 830Wee 365 MS Excel Office 365 Ted Talks Flipboard Nova Mindmapping Record Voice Pen # **Alignment to 21st Century Skills & Technology** CAED 0 2 12 C 1 | CAEP.9.2.12.C.1 | Review career goals and determine steps necessary for attainment. | |-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | CAEP.9.2.12.C.2 | Modify Personalized Student Learning Plans to support declared career goals. | | CAEP.9.2.12.C.3 | Identify transferable career skills and design alternate career plans. | | CAEP.9.2.12.C.4 | Analyze how economic conditions and societal changes influence employment trends and future education. | | CAEP.9.2.12.C.5 | Research career opportunities in the United States and abroad that require knowledge of world languages and diverse cultures. | | CAEP.9.2.12.C.6 | Investigate entrepreneurship opportunities as options for career planning and identify the knowledge, skills, abilities, and resources required for owning and managing a business. | | CAEP.9.2.12.C.7 | Examine the professional, legal, and ethical responsibilities for both employers and employees in the global workplace. | | CAEP.9.2.12.C.8 | Assess the impact of litigation and court decisions on employment laws and practices. | | CAEP.9.2.12.C.9 | Analyze the correlation between personal and financial behavior and employability. | | TECH.8.1.12.A.2 | Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review. | | TECH.8.1.12.A.3 | Collaborate in online courses, learning communities, social networks or virtual worlds to discuss a resolution to a problem or issue. | | TECH.8.1.12.A.4 | Construct a spreadsheet workbook with multiple worksheets, rename tabs to reflect the data on the worksheet, and use mathematical or logical functions, charts and data from all worksheets to convey the results. | | TECH.8.1.12.A.5 | Create a report from a relational database consisting of at least two tables and describe the process, and explain the report results. | | TECH.8.1.12.B.CS1 | Apply existing knowledge to generate new ideas, products, or processes. | | | | # **21st Century Skills/Interdisciplinary Themes** Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Please list only the 21st Century/Interdisciplinary Themes that will be incorporated into this unit. - · Communication and Collaboration - · Creativity and Innovation - Critical thinking and Problem Solving - ICT (Information, Communications and Technology) Literacy - Information Literacy - · Life and Career Skills - Media Literacy # **21st Century Skills** Upon completion of this section, please remove all remaining descriptions, notes, outlines, examples and/or illustrations that are not needed or used. Please list only the 21st Century Skills that will be incorporated into this unit. - Civic Literacy - Environmental Literacy - Financial, Economic, Business and Entrepreneurial Literacy - Global Awareness - Health Literacy ## **Differentiation** - Small lab groups - Provide large print study guide for The Mole test. - Schedule extra time for students during quiz. ### Differentiations: - Small group instruction - Small group assignments - Extra time to complete assignments - Pairing oral instruction with visuals - Repeat directions - Use manipulatives - Center-based instruction - Token economy - Study guides - Teacher reads assessments allowed - Scheduled breaks - Rephrase written directions - Multisensory approaches - Additional time - Preview vocabulary - Preview content & concepts - Story guides - Behavior management plan - Highlight text - Student(s) work with assigned partner - Visual presentation - Assistive technology - Auditory presentations - Large print edition - Dictation to scribe - Small group setting ### **Hi-Prep Differentiations:** - Alternative formative and summative assessments - Choice boards - Games and tournaments - Group investigations - Guided Reading - Independent research and projects - Interest groups - Learning contracts - Leveled rubrics - Literature circles - Multiple intelligence options - Multiple texts - Personal agendas - Project-based learning - Problem-based learning - Stations/centers - Think-Tac-Toes - Tiered activities/assignments - Tiered products - Varying organizers for instructions ### **Lo-Prep Differentiations** - Choice of books or activities - Cubing activities - Exploration by interest - Flexible grouping - Goal setting with students - Jigsaw - Mini workshops to re-teach or extend skills - Open-ended activities - Think-Pair-Share - Reading buddies - Varied journal prompts - Varied supplemental materials # **Special Education Learning (IEP's & 504's)** - Pre- test study guides provided. - Step by step mole equations. - Provide powerpoints on google classroom. - printed copy of board work/notes provided - additional time for skill mastery - assistive technology - behavior management plan - Center-Based Instruction - check work frequently for understanding - computer or electronic device utilizes - extended time on tests/ quizzes - have student repeat directions to check for understanding - highlighted text visual presentation - modified assignment format - modified test content - modified test format - modified test length - multi-sensory presentation - multiple test sessions - preferential seating - preview of content, concepts, and vocabulary - Provide modifications as dictated in the student's IEP/504 plan - reduced/shortened reading assignments - Reduced/shortened written assignments - secure attention before giving instruction/directions - shortened assignments - student working with an assigned partner - teacher initiated weekly assignment sheet - Use open book, study guides, test prototypes # **English Language Learning (ELL)** - Provide spanish textbook. - Peers translate notes. - Provide both spanish and english examples on chemical reactions. - teaching key aspects of a topic. Eliminate nonessential information - using videos, illustrations, pictures, and drawings to explain or clarif - allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning; - allowing students to correct errors (looking for understanding) - · allowing the use of note cards or open-book during testing - · decreasing the amount of workpresented or required - having peers take notes or providing a copy of the teacher's notes - · modifying tests to reflect selected objectives - · providing study guides - · reducing or omitting lengthy outside reading assignments - · reducing the number of answer choices on a multiple choice test - tutoring by peers - using computer word processing spell check and grammar check features - using true/false, matching, or fill in the blank tests in lieu of essay tests ### At Risk - -Provide modified tests on chemical reactions. - -Provide tutoring times after school. - -Allow test correction for credit. - -Provide step by step examples on balancing chemical reactions. - · allowing students to correct errors (looking for understanding) - · teaching key aspects of a topic. Eliminate nonessential information - allowing products (projects, timelines, demonstrations, models, drawings, dioramas, poster boards, charts, graphs, slide shows, videos, etc.) to demonstrate student's learning - · allowing students to select from given choices - allowing the use of note cards or open-book during testing - collaborating (general education teacher and specialist) to modify vocabulary, omit or modify items to reflect objectives for the student, eliminate sections of the test, and determine how the grade will be determined prior to giving the test. - decreasing the amount of workpresented or required - having peers take notes or providing a copy of the teacher's notes - marking students' correct and acceptable work, not the mistakes - modifying tests to reflect selected objectives - providing study guides - reducing or omitting lengthy outside reading assignments - · reducing the number of answer choices on a multiple choice test - tutoring by peers - · using authentic assessments with real-life problem-solving - using true/false, matching, or fill in the blank tests in lieu of essay tests - · using videos, illustrations, pictures, and drawings to explain or clarify # **Talented and Gifted Learning (T&G)** - -Provide advanced work on Chemical bonds and reactions. - -Provide extra lab assignments. - -Create a blog about different chemical reactions. - Above grade level placement option for qualified students - · Advanced problem-solving - Allow students to work at a faster pace - Cluster grouping - Complete activities aligned with above grade level text using Benchmark results - · Create a blog or social media page about their unit - Create a plan to solve an issue presented in the class or in a text - Debate issues with research to support arguments - Flexible skill grouping within a class or across grade level for rigor - · Higher order, critical & creative thinking skills, and discovery - Multi-disciplinary unit and/or project - Teacher-selected instructional strategies that are focused to provide challenge, engagement, and growth opportunities - Utilize exploratory connections to higher-grade concepts - · Utilize project-based learning for greater depth of knowledge ## **Sample Lesson** Using the template below, please develop a **Sample Lesson** for the first unit only. | Unit Name: | |---------------------------------| | NJSLS: | | Interdisciplinary Connection: | | Statement of Objective: | | Anticipatory Set/Do Now: | | Learning Activity: | | Student Assessment/CFU's: | | Materials: | | 21st Century Themes and Skills: | | Differentiation/Modifications: | | Integration of Technology: | | | | |