$\qquad$

## Algebraic Manipulations Practice for Science Classes

Perform the following algebra tasks. Show all of the steps necessary to solve for the given variable.

1. $Q=m c \Delta T \quad$ solve for $m$
2. $d=m / V$
solve for V
3. $P_{1} V_{1}=P_{2} V_{2} \quad$ solve for $V_{2}$
4. $\mathrm{E}=h \nu \quad$ solve for $v$
5. $P_{1} V_{1} T_{2}=P_{2} V_{2} T_{1} \quad$ solve for $P_{2}$
6. $\lambda=h / \mathrm{mv}$ solve for $v$
7. $E=m c^{2} \quad$ solve for $c$
8. $T_{F}=1.80\left(T_{C}\right)+32$ solve for $T_{C}$
9. $\mathrm{PV}=\mathrm{nRT} \quad$ solve for R
10. $\frac{P_{1}}{n_{1}} \frac{V_{1}}{T}=\frac{P_{2}}{n_{2}} \underline{V}_{2} \quad$ solve for $T_{2}$
$\qquad$
$\qquad$ Period $\qquad$

## Algebraic Manipulations Practice, Part 2

Provide the answer to the following calculations. Solve the equation for the unknown variable before substituting the values into the equation. SHOW ALL WORK!

1. A $4.0 \mathrm{~g}(\mathrm{~m})$ sample of glass was heated from $0^{\circ} \mathrm{C}$ to $41^{\circ} \mathrm{C}(\Delta \mathrm{T})$, and was found to have absorbed $32 \mathrm{~J}(\mathrm{Q})$ of heat. What is the specific heat (c) of this type of glass?
2. A piece of copper 12.00 cm long, 8.50 cm wide, and 0.50 cm thick (what's the volume? V) has a mass (m) of 457.00 g . What is its density (d)?
3. A sample of oxygen gas collected occupies a volume of $150 \mathrm{~mL}\left(\mathrm{~V}_{1}\right)$ when its pressure is $720 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{P}_{1}\right)$. What volume $\left(\mathrm{V}_{2}\right)$ will the gas occupy at a pressure of $750 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{P}_{2}\right)$ ?
4. What is the frequency $(v)$ of a wave with an energy of $1.55 \times 10^{-24} \mathrm{~J}(\mathrm{E})$ ? ( $h=6.626 \times 10^{-34} \mathrm{~J}$-s )
5. A helium-filled balloon has a volume of $50.0 \mathrm{~L}\left(\mathrm{~V}_{1}\right)$ at $25^{\circ} \mathrm{C}\left(\mathrm{T}_{1}\right)$ and $820 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{P}_{1}\right)$. What volume $\left(\mathrm{V}_{2}\right)$ will it occupy at $650 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{P}_{2}\right)$ and $10^{\circ} \mathrm{C}\left(\mathrm{T}_{2}\right)$ ?
6. What is the mass $(\mathrm{m})$ of a particle with a wavelength of $4.257 \times 10^{-7} \mathrm{~cm}(\lambda)$, and a frequency of $7.05 \times 10^{14} \mathrm{~Hz}(v)$ ?
7. Calculate the energy ( E ) of a nuclear particle with a mass of $1.673 \times 10^{-24} \mathrm{~g}(\mathrm{~m})$. ( $\mathrm{C}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )
8. Convert $47^{\circ} \mathrm{F}$ to Celsius.
9. What is the pressure in atmospheres $(\mathrm{P})$ exerted by a $0.500 \mathrm{~mol}(\mathrm{n})$ sample of chlorine in a $10.0 \mathrm{~L}(\mathrm{~V})$ container at $298 \mathrm{~K}(\mathrm{~T})$ ?
10. What is the initial temperature $\left(T_{1}\right)$ of a $1.50 \mathrm{~mol}(\mathrm{n})$ sample of gas at 760 mm Hg $\left(\mathrm{P}_{1}\right)$ and a volume of $2.65 \mathrm{~L}\left(\mathrm{~V}_{1}\right)$ that is heated to $305 \mathrm{~K}\left(\mathrm{~T}_{2}\right)$ at a pressure of 675 mm $\mathrm{Hg}\left(\mathrm{P}_{2}\right)$ and a new volume of $5.00 \mathrm{~L}\left(\mathrm{~V}_{2}\right)$ ?
