Revised August 2009

HONORS LAB 6b: Boyle's law and Charles' law

Boyles law

The data in the shaded columns below shows the variation in pressure and volume for a fixed mass of gas at a constant temperature in ten different experiments. The units of pressure and volume vary in each experiment.

	Pressure				Volume			
Experiment	Value	Unit	Value	atm	Value	Unit	Value	mL
1	40.00	mmHg		atm	12.30	L		mL
2	43.54	mmHg		atm	11.30	L		mL
3	164.0	mmHg		atm	3.000	L		mL
4	123.0	mmHg		atm	4.000	L		mL
5	8.786	mmHg		atm	56.00	L		mL
6	10.93	Torr		atm	45.00	L		mL
7	27.64	Torr		atm	17.80	L		mL
8	34.00	Torr		atm	14.50	L		mL
9	0.02800	atm	0.028	atm	23430	mL	23430	mL
10	0.07400	atm	0.074	atm	8786	mL	8786	mL

<u>Task 1</u>

Complete the table by converting (where necessary) the various pressures given to atmospheres (atm) and by converting (where necessary) the various volumes given to milliliters (mL).

<u>Task 2</u>

Use Excel to plot and print a graph of Volume in mL (x axis) and Pressure in atm (y axis). Use whatever titles, axes labels and grid lines you feel appropriate to enhance the graph. (<u>It will help</u> to sort the data into ascending numerical order of volume).

Revised August 2009

Charles' law

The data in the shaded columns below shows the variation in temperature and volume for a fixed mass of gas at a constant pressure in 10 different experiments.

		Tempe	Volume			
Experiment	Value	Unit	Value	к	Value	Unit
1	200.	°C		к	3.10	L
2	-242	°C		к	0.200	L
3	-227	°C		к	0.300	L
4	-136	°C		к	0.900	L
5	536	°C		к	5.30	L
6	215	°C		к	3.20	L
7	2.00	°C		к	1.80	L
8	627	°C		к	5.90	L
9	658	°C		к	6.10	L
10	-273	°C		к	0.00	L

<u> Task 3</u>

Complete the table by converting °C to Kelvin for each experiment.

<u>Task 4</u>

Use Excel to plot and print a graph of Temperature **in** ^o**C** (x-axis) and Volume in L (y-axis). Use whatever titles, axes labels and grid lines you feel appropriate to enhance the graph.

<u> Task 5</u>

Use Excel to plot and print a graph of Temperature **in K** (x-axis) against Volume in L (y-axis). Use whatever titles, axes labels and grid lines you feel appropriate to enhance the graph.

Analysis of results

Revised August 2009

Boyle's law

- 1. Calculate a value of a constant in units of atm mL.
- 2. Use the constant or the graph to complete the table below for this particular gas.

Pressure in atm	Volume in mL
0.01200	
	23480
0.4500	

Charles' law

- 3. Use the graphs to find the intercept on the x-axis for both the °C plot and the K plot.
- 4. What is the value for volume at the intercept on the x-axis? What can be said about this volume?
- 5. The intercepts you have recorded in question #3 represent a particular temperature. What is the significance of this temperature?