© Adrian Dingle's Chemistry Pages 2004-13. All rights reserved. These materials may NOT be copied or redistributed in any way, except for individual class instruction.

Revised August 2012

HONORS LAB 11a: Le Chatelier's Principle

ADAPTED FROM VONDERBRINK: Lab Experiments for AP Chemistry

Aim To investigate Le Chatelier's Principle

<u>Apparatus</u> Test tubes, 100. mL beaker, stirring rod, test tube rack, 10.0 mL Measuring Cylinder, Funnel, Filter Paper

<u>Chemicals</u> 3.0 M HCl, 0.100 M HCl, solid Na₂HPO₄, 0.100 M NaOH, 0.200 M iron (III) nitrate, solid KSCN, bromothymol blue Indicator solution, 0.002 M KSCN, solid NaCl, solid NH₄Cl, phenolphthalein, 0.1 M NH₃, 1.5 M NH₃

Method

<u>Part 1.</u> NaCl_(s) $\leftarrow \rightarrow$ Na⁺_(aq) + Cl⁻_(aq)

Pour solid NaCl into a test tube to a depth of about 1.00 cm and then add water until the tube is about half full. Cork and shake the tube. If all the solid dissolves add more NaCl until a solution is formed with some excess solid undissolved. Filter this saturated solution into a second tube. Add a few drop of concentrated HCl to the saturated solution. Record your observations.

<u>Part 2.</u> $HIn_{(aq)} \leftarrow \rightarrow H^{+}_{(aq)} + In^{-}_{(aq)}$ (HIn is Yellow, $H^{+} + In^{-}$ is Blue)

Half fill a small test tube with distilled water, and add a few drops of Bromothymol Blue Indicator. Add a few drops of 0.100 M HCl and stir. Record your observations.

Now add a few drops of 0.100 M NaOH with stirring until no further color change is observable. Record your observations.

<u>Part 3.</u> $\operatorname{Fe}^{3+}_{(aq)} + \operatorname{SCN}_{(aq)}^{-} \leftrightarrow$ [FeSCN]²⁺ (aq) (Fe³⁺_(aq) + SCN⁻ is colorless, Fe[SCN]²⁺ is red)

Pour about 10.0 mL of 0.002 M KSCN solution into a beaker. Add 10.0 mL of distilled water and 5 drops of 0.200 M $Fe(NO_3)_3$ solution. Stir the solution and record your observations.

Split the solution in the beaker equally into three separate test tubes. Carry out the following experiments, each time recording your observations.

To one test tube add 3 crystals of solid KSCN. To another test tube add, with stirring, 6 drops of $Fe(NO_3)_3$ solution. To another test tube add, with stirring, a few small crystals of Na_2HPO_4 .

<u>Part 4.</u> $NH_{3(l)} + H_2O_{(l)} \leftrightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$ (Phenolphthalein is pink in the hydroxide ions).

Take a few drops of 0.1M NH_3 solution and add two drops of phenolphthalein. Add a few crystal of solid NH_4CI . Add a few drops of 1.5M NH_3 . Add a few drops of 3.0M HCI. Record your observations after each addition.

 $\frac{\text{Part 5. (DEMO)}}{\text{Pink}} \underset{\text{Blue}}{\text{Co}(H_2O)_6^{2+}} (aq) + 4\text{Cl}_{(aq)} \leftrightarrow CoCl_4^{2-} (aq) + 6\text{H}_2O_{(l)} \qquad (\Delta H = +50.0 \text{ kJ/mol})$

A sealed pipet containing the purple equilibrium mixture is immersed it in hot water, then immersed in an ice bath. In each case record your observations.

Revised August 2012

Results

Part 1.

Result of adding conc. HCl to saturated NaCl	Explanation

Part 2.

Result of adding HCI	Explanation

Result of adding NaOH	Explanation

© Adrian Dingle's Chemistry Pages 2004-13. All rights reserved. These materials may NOT be copied or redistributed in any way, except for individual class instruction.

Revised August 2012

<u>Part 3.</u>

Color of Fe(NO ₃) ₃	
Color of KSCN	
Color of complex ion [Fe(SCN)] ²⁺	

Complex Solution	Observations AND Explanation
Test tube with solid KSCN added	
Test tube with Fe(NO₃)₃ added	
Test tube with Na₂HPO₄ added	

.....

Revised August 2012

<u>Part 4.</u>

Result of adding Phenolphthalein	Explanation

Result of adding NH₄CI solid	Explanation

Result of adding 1.5M NH ₃	Explanation

Result of adding 3.0M HCI	Explanation

Revised August 2012

Part 5 (DEMO).

Effect of heating the pipet	Explanation

Effect of cooling the pipet	Explanation

Revised August 2012

Conclusion/Calculations

1. State Le Chatelier's Principle.

2. Consider the equilibrium below, for which the forward reaction is exothermic.

$$X_{2(g)} + O_{2(g)} \leftarrow \rightarrow 2XO_{(g)}$$

Predict and explain the effect of making the following changes on this equilibrium

(i) Adding more $X_{2(g)}$

(ii) Adding more O_{2(g)}

(iii) Increasing the pressure

(iv) Increasing the temperature