Revised August 2012

HONORS LAB 4c: Limiting Reactant & % Yield

<u>**Aim**</u> To investigate the stoichiometry of the reaction between sodium hydrogen carbonate and ethanoic acid. The reaction is;

 $NaHCO_{3(s)} + CH_3COOH_{(aq)} \rightarrow CH_3COONa_{(aq)} + H_2O_{(l)} + CO_{2(g)}$

Apparatus Four 125 mL Erlenmeyer flasks, graduated cylinders, filter papers, electronic balance

Chemicals Sodium hydrogen carbonate, ethanoic acid

Method

- 1. Measure five, 3.50 g samples of sodium hydrogen carbonate onto different five different filter papers.
- Measure 10.0 mL of ethanoic acid using a 10 mL graduated cylinder. Pour this into a clean 125 mL Erlenmeyer flask. Rinse the graduated cylinder with a **small** amount of water and pour this rinse water into the flask. Measure the mass of the flask and contents.
- Pour one of the 3.50 g samples of sodium hydrogen carbonate into the flask and swirl to mix the contents until no more bubbling occurs (this may take a few minutes). Do not allow any of the contents to splash out.
- 4. When all bubbling has ended, determine the mass of the flask and contents and record in the results table. Pour out the contents, wash the flask and repeat steps #2 through #4, four more times using 30.0, 50.0, 70.0 and 90.0 mL of ethanoic acid respectively instead of 10.0 mL.

Revised August 2012

1.7

<u>Results</u>

		EXPERIMENT					
		1	2	3	4	5	
Α	Mass of NaHCO₃ in g	3.50	3.50	3.50	3.50	3.50	
В	Molar mass of NaHCO₃ in gmol ⁻¹	84.0	84.0	84.0	84.0	84.0	
С	Moles of NaHCO ₃ in mols						
D	Volume of CH₃COOH in mL	10.0	30.0	50.0	70.0	90.0	
Е	Moles* of CH₃COOH in mols						
F	Excess Reagent						
G	Limiting Reagent						
Н	Theoretical Mass Loss in g						
	Mass of flask + acid + water in g						
J	Mass of flask + acid + rinse water + NaHCO₃ in g						
K	Final mass of flask + contents in g						
L	Actual Mass Loss in g						
Μ	% Yield						

* The ethanoic acid is a solution that has a concentration of 0.837 M (or 0.837 moles per liter of solution). Moles of the acid can be calculated using moles = (concentration) x (volume in L).

Revised August 2012

Conclusion/Calculations:

- 1. Make a graph of your data, using mass loss on the y-axis with moles of ethanoic acid on the x-axis. Use (0,0) as the origin.
- 2. Why did the flasks lose mass?

3. Is there a point at which adding more ethanoic does not increase the mass loss? Explain.

4. Is there a limit to the quantity of gas that can be produced from 3.50 grams of sodium hydrogen carbonate? Explain.