Aim To investigate the stoichiometry of the reaction between sodium hydrogen carbonate and ethanoic acid. The reaction is;

$$
\mathrm{NaHCO}_{3(\mathrm{~s})}+\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Apparatus Four 125 mL Erlenmeyer flasks, graduated cylinders, filter papers, electronic balance

Chemicals Sodium hydrogen carbonate, ethanoic acid

Method

1. Measure five, 3.50 g samples of sodium hydrogen carbonate onto different five different filter papers.
2. Measure 10.0 mL of ethanoic acid using a 10 mL graduated cylinder. Pour this into a clean 125 mL Erlenmeyer flask. Rinse the graduated cylinder with a small amount of water and pour this rinse water into the flask. Measure the mass of the flask and contents.
3. Pour one of the 3.50 g samples of sodium hydrogen carbonate into the flask and swirl to mix the contents until no more bubbling occurs (this may take a few minutes). Do not allow any of the contents to splash out.
4. When all bubbling has ended, determine the mass of the flask and contents and record in the results table. Pour out the contents, wash the flask and repeat steps \#2 through \#4, four more times using $30.0,50.0,70.0$ and 90.0 mL of ethanoic acid respectively instead of 10.0 mL .

Results

		EXPERIMENT				
		1	2	3	4	5
A	Mass of NaHCO_{3} in g	3.50	3.50	3.50	3.50	3.50
B	Molar mass of NaHCO_{3} in gmol^{-1}	84.0	84.0	84.0	84.0	84.0
	Moles of NaHCO_{3} in mols					
	Volume of $\mathrm{CH}_{3} \mathrm{COOH}$ in mL	10.0	30.0	50.0	70.0	90.0
E	Moles* of $\mathrm{CH}_{3} \mathrm{COOH}$ in mols					
	Excess Reagent					
	Limiting Reagent					
	Theoretical Mass Loss in g					
	Mass of flask + acid + water in g					
	```Mass of flask + acid + rinse water + NaHCO```					
$K$	Final mass of flask + contents in g					
	Actual Mass Loss in g					
	\% Yield					

* The ethanoic acid is a solution that has a concentration of 0.837 M (or 0.837 moles per liter of solution). Moles of the acid can be calculated using moles $=$ (concentration) $\times$ (volume in L).


## Conclusion/Calculations:

1. Make a graph of your data, using mass loss on the $y$-axis with moles of ethanoic acid on the $x$-axis. Use $(0,0)$ as the origin.
2. Why did the flasks lose mass?
3. Is there a point at which adding more ethanoic does not increase the mass loss? Explain.
4. Is there a limit to the quantity of gas that can be produced from 3.50 grams of sodium hydrogen carbonate? Explain.
