AP ${ }^{\circledR}$ CHEMISTRY
 2007 SCORING GUIDELINES (Form B)

Question 5

Answer the following questions about laboratory solutions involving acids, bases, and buffer solutions.
(a) Lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, reacts with water to produce an acidic solution. Shown below are the complete Lewis structures of the reactants.

In the space provided above, complete the equation by drawing the complete Lewis structures of the reaction products.

One point is earned for each correct structure.
(b) Choosing from the chemicals and equipment listed below, describe how to prepare 100.00 mL of a 1.00 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ (molar mass $53.5 \mathrm{~g} \mathrm{~mol}^{-1}$). Include specific amounts and equipment where appropriate.
$\mathrm{NH}_{4} \mathrm{Cl}(s) \quad 50 \mathrm{~mL}$ buret $\quad 100 \mathrm{~mL}$ graduated cylinder $\quad 100 \mathrm{~mL}$ pipet
Distilled water 100 mL beaker 100 mL volumetric flask Balance
mass of $\mathrm{NH}_{4} \mathrm{Cl}=(0.100 \mathrm{~L})\left(1.00 \mathrm{~mol} \mathrm{~L}^{-1}\right)\left(53.5 \mathrm{~g} \mathrm{~mol}^{-1}\right)=5.35 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$

1. Measure out $5.35 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$ using the balance.
2. Use the 100 mL graduated cylinder to transfer approximately 25 mL of distilled water to the 100 mL volumetric flask.
3. Transfer the $5.35 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$ to the 100 mL volumetric flask.
4. Continue to add distilled water to the volumetric flask while swirling the flask to dissolve the $\mathrm{NH}_{4} \mathrm{Cl}$ and remove all $\mathrm{NH}_{4} \mathrm{Cl}$ particles adhered to the walls.
5. Carefully add distilled water to the 100 mL volumetric flask until the bottom of the meniscus of the solution reaches the etched mark on the flask.

One point is earned for the mass.

One point is earned for using a volumetric flask.

One point is earned for diluting to the mark.

AP ${ }^{\circledR}$ CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Question 5 (continued)

(c) Two buffer solutions, each containing acetic acid and sodium acetate, are prepared. A student adds 0.10 mol of HCl to 1.0 L of each of these buffer solutions and to 1.0 L of distilled water. The table below shows the pH measurements made before and after the 0.10 mol of HCl is added.

	pH Before HCl Added	pH After HCl Added
Distilled Water	7.0	1.0
Buffer 1	4.7	2.7
Buffer 2	4.7	4.3

(i) Write the balanced net-ionic equation for the reaction that takes place when the HCl is added to buffer 1 or buffer 2 .

$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$	One point is earned for the equation.

(ii) Explain why the pH of buffer 1 is different from the pH of buffer 2 after 0.10 mol of HCl is added.

Before the HCl was added, each buffer had the same pH and thus had the same $\left[\mathrm{H}^{+}\right]$. Because K_{a} for acetic acid is a constant, the ratio of $\left[\mathrm{H}^{+}\right]$to K_{a} must also be constant; this means that the ratio of $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ to $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]$ is the same for both buffers, as shown by the following equation, derived from the equilibrium-constant expression for the dissociation of acetic acid.

$$
\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=\frac{\left[\mathrm{H}^{+}\right]}{K_{a}}
$$

After the addition of the H^{+}, the ratio in buffer 1 must have been greater than the corresponding ratio in buffer 2, as evidenced by their respective pH values. Thus a greater proportion of the $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$in buffer 1 must have reacted with the added H^{+}compared to the proportion that reacted in buffer 2. The difference between these proportions means that the original concentrations of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$had to be smaller in buffer 1 than in buffer 2.

One point is earned for a correct answer involving better buffering capacity or relative amount of base (acetate ion).

AP ${ }^{\circledR}$ CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Question 5 (continued)

(iii) Explain why the pH of buffer 1 is the same as the pH of buffer 2 before 0.10 mol of HCl is added.

Both buffer solutions have the same acid to conjugate-base mole ratio in the formula below.

$$
\left[\mathrm{H}^{+}\right]=K_{a} \frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}
$$

One point is earned for the correct answer involving ratio of acid to base in the buffer.

Therefore, the buffers have the same $\left[\mathrm{H}^{+}\right]$and pH .

Answer Question 5 and Question 6. The Section II score weighting for these questions is 15 percent each.
Your responses to these questions will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.
5. Answer the following questions about laboratory situations involving acids, bases, and buffer solutions.
(a) Lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, reacts with water to produce an acidic solution. Shown below are the complete Lewis structures of the reactants.

In the space provided above, complete the equation by drawing the complete Lewis structures of the reaction products.
(b) Choosing from the chemicals and equipment listed below, describe how to prepare 100.00 mL of a 1.00 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ (molar mass $53.5 \mathrm{~g} \mathrm{~mol}^{-1}$). Include specific amounts and equipment where appropriate.

$\mathrm{NH}_{4} \mathrm{Cl}(s)$	50 mL buret	100 mL graduated cylinder	100 mL piet
Distilled water	100 mL beaker	100 mL volumetric flask	Balance

(c) Two buffer solutions, each containing acetic acid and sodium acetate, are prepared. A student adds 0.10 mol of HCl to 1.0 L of each of these buffer solutions and to 1.0 L of distilled water. The table below shows the pH measurements made before and after the 0.10 mol of HCl is added.

	pH Before HCl Added	pH After HCl Added
Distilled water	7.0	1.0
Buffer 1	4.7	2.7
Buffer 2	4.7	4.3

(i) Write the balanced net-ionic equation for the reaction that takes place when the HCl is added to buffer 1 or buffer 2 .
(ii) Explain why the pH of buffer 1 is different from the pH of buffer 2 after 0.10 mol of HCl is added.
(iii) Explain why the pH of buffer 1 is the same as the pH of buffer 2 before 0.10 mol of HCl is added.

Sa.) ABOVE

$\begin{array}{llllllllllllllll}\mathbf{B} & \mathbf{B} & 5 A_{2}\end{array}$
ADDITIONAL PAGE FOR ANSWERING QUESTION 5.
(3) Mass at the desired MHyClos wo th the Balance $(5,35$ grams $)$
(4) Pace the massed $\mathrm{NH}+\mathrm{Cl}$ into a 100 m 2 baker, and add enough water cental
 dissociation!)

 task
 Volumetric flask on til the liquid lave reuchon the looms mark!
c.) $\mathrm{i} / \mathrm{H}_{\mathrm{cm})}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \mathrm{cms} \rightleftharpoons \mathrm{H}\left(2 \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{Cm}\right)$
ii. The difference in pHiflues of Buffer 1 車 24 mastluady die to the difference r in initalloncentiations of $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$ and $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right.$]. Most lively, the magntuedson

 of $[A]$ [HA] are large, addition! act or bate adder would not have suaturexat effect on the Gina PH .

 $\left[A^{-}\right]$shoulbe the same. Thus, in the Hendenon-Hasselbsch equator, we cense that:

$$
p H=p k a+\log \left[A^{2}\right]
$$

Since the cincatrater of $[A]=[H A]$, then log $[A]$, wade equal to 0 , Therefor, pHcurulenjult pho (-h sanka) Sing the buffers rat 142 both indole the same
 Thess, stere also the same.

$\begin{array}{llllllllllllllll}\mathbf{B} & \mathbf{B} & S B,\end{array}$

Answer Question 5 and Question 6. The Section II score weighting for these questions is 15 percent each.
Your responses to these questions will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.
5. Answer the following questions about laboratory situations involving acids, bases, and buffer solutions.
(a) Lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, reacts with water to produce an acidic solution. Shown below are the complete Lewis structures of the reactants.

In the space provided above, complete the equation by drawing the complete Lewis structures of the reaction products.
(b) Choosing from the chemicals and equipment listed below, describe how to prepare 100.00 mL of a 1.00 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ (molar mass $53.5 \mathrm{~g} \mathrm{~mol}^{-1}$). Include specific amounts and equipment where appropriate.

$\mathrm{NH}_{4} \mathrm{Cl}(s)$	50 mL buret	100 mL graduated cylinder	100 mL pipet
Distilled water	100 mL beaker	100 mL volumetric flask	Balance

(c) Two buffer solutions, each containing acetic acid and sodium acetate, are prepared. A student adds 0.10 mol of HCl to 1.0 L of each of these buffer solutions and to 1.0 L of distilled water. The table below shows the pH measurements made before and after the 0.10 mol of HCl is added.

	pH Before HCl Added	pH After HCl Added
Distilled water	7.0	1.0
Buffer 1	4.7	2.7
Buffer 2	4.7	4.3

(i) Write the balanced net-ionic equation for the reaction that takes place when the HCl is added to buffer 1 or buffer 2 .
(ii) Explain why the pH of buffer 1 is different from the pH of buffer 2 after 0.10 mol of HCl is added.
(iii) Explain why the pH of buffer 1 is the same as the pH of buffer 2 before 0.10 mol of HCl is added.

ADDITIONAL PAGE FOR ANSWERING QUESTION 5.
b) Since $M=1.00 \mathrm{~mol} / \mathrm{l}$ and $V=100 \mathrm{ml}=0.100 \mathrm{l}$

$$
\begin{aligned}
n=M \cdot v & =(1.00 \mathrm{msl} / \mathrm{l})(0.100 \mathrm{l}) \\
n & =0.100 \mathrm{~ms}=\text { of molder of Nifty u (aq) }
\end{aligned}
$$

$$
\begin{aligned}
& m_{\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s})} \text { to be added }=n_{\mathrm{NH}+\mathrm{Cl}(\mathrm{aq})} \cdot \text { Molar class } \mathrm{NH}_{4} \mathrm{Cl} \\
& =(0.100 \mathrm{~mol}) \cdot(53.5 \mathrm{~g} / \mathrm{mst}) \\
& =5.35 \mathrm{~g}
\end{aligned}
$$

since 5.35 g of $N+$ ers) is to be added this specific amount of the sold $\mathrm{NH}_{y} \mathrm{Cl}(\mathrm{s})$ is manured with the balance provided.

- As to perpare the Solvent with the predetermined volume of 100 ml , the 100 ml piper is used to measure out 100 ml of water that war filled in a beater of again 100 ml beforelerd. The eaton why a beater ir lied to cary out the measurement is that it is the most accurate end precise apparans provided.
- After the 100 me beaker is cleaned out, the water in the 100 me piet is refilled in the bear to be followed by the 5.35 g of NH , $U(s)$ in hand. The solvent and volute are mixed well to papare the $1.00 \mu, 100 \mathrm{ml}$ aqueur rotation of NH_{4} Crag).
b) (i) $\left(\mathrm{H}_{3}\left(\mathrm{OO}^{-}(\mathrm{aq})+\mathrm{HCl}^{(\mathrm{aq})} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{Cl}^{-}\right.\right.$(aq) (ii) The rearon why these pH value n are different is that the amount of $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ ions present in the two buffer solutions we different. There are less moles of $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ present in buffer 1 to neutralize the HCe(aq) added to minimize its lafuence on the pitt.
(iii) The reason is the at the ratio of the base concentration to ard concentration in the buffer solutions are the same.

ADDITIONAL PAGE FOR ANSWERING QUESTION 5.
- According to the Handerson - Hastelbach equation

$$
p^{H}=p_{q}+\log \frac{\text { [Base] }}{\text { [Acid] }}
$$

- In this care

$$
p H=p k_{\mathrm{CH}_{3} \mathrm{COOH}}+\log \frac{\left[\mathrm{cH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{[} \mathrm{H}_{3} \mathrm{COOH}\right]} .
$$

- The fact that $\mathrm{pH}_{1}=\mathrm{pH}_{2}$ means that,
the $\left[\mathrm{CH}_{3} \mathrm{COOD}^{-7}\right.$ ratio is the same in both buffer solutions. $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
\qquad

$\begin{array}{llllllllllllllll}\mathbf{B} & \mathbf{B} & 5 C \text {, }\end{array}$

Answer Question 5 and Question 6. The Section II score weighting for these questions is 15 percent each.
Your responses to these questions will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.
5. Answer the following questions about laboratory situations involving acids, bases, and buffer solutions.
(a) Lactic acid, $\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$, reacts with water to produce an acidic solution. Shown below are the complete Lewis structures of the reactants.

In the space provided above, complete the equation by drawing the complete Lewis structures of the reaction products.
(b) Choosing from the chemicals and equipment listed below, describe how to prepare 100.00 mL of a 1.00 M aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ (molar mass $53.5 \mathrm{~g} \mathrm{~mol}^{-1}$). Include specific amounts and equipment where appropriate.

$\mathrm{NH}_{4} \mathrm{Cl}(s)$	50 mL buret	100 mL graduated cylinder	100 mL pipet
Distilled water	100 mL beaker	100 mL volumetric flask	Balance

(c) Two buffer solutions, each containing acetic acid and sodium acetate, are prepared. A student adds 0.10 mol of HCl to 1.0 L of each of these buffer solutions and to 1.0 L of distilled water. The table below shows the pH measurements made before and after the 0.10 mol of HCl is added.

	pH Before HCl Added	pH After HCl Added
Distilled water	7.0	1.0
Buffer 1	4.7	2.7
Buffer 2	4.7	4.3

(i) Write the balanced net-ionic equation for the reaction that takes place when the HCl is added to buffer 1 or buffer 2.
(ii) Explain why the pH of buffer 1 is different from the pH of buffer 2 after 0.10 mol of HCl is added.
(iii) Explain why the pH of buffer 1 is the same as the pH of buffer 2 before 0.10 mol of HCl is added.

ADDITIONAL PAGE FOR ANSWERING QUESTION 5.
b) moles of solution $=0.1$

Use the balance to get 5.35 gros of HCl
Use the 100 ml beaker to get 100 ml of water Add the 5.35 gm of HCl to the 100 ml of water
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ci) $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}$

1
ii) In buffer, the amount of sodium acetate is relatively Lower than that in buffer 2. Thus as HCL keeps getting added, the acetate ions in buffer 1 get wed up more quickly, resulting in excess of H^{+}ions Hence pH decreases
iii) Before the Ha is added, the pH of both the buttes s the same because the . H^{+}concentration in both buffers is the same.

AP ${ }^{\circledR}$ CHEMISTRY
 2007 SCORING COMMENTARY (Form B)

Question 5

Sample: 5A

Score: 8
This response earned all 8 points: 2 for part (a), 3 for part (b), 1 for part (c)(i), 1 for part (c)(ii), and 1 for part (c)(iii).

Sample: 5B

Score: 5

Both points were earned in part (a). The first point was earned in part (b) for the correct mass calculation; the other 2 points were not earned because the volumetric flask is not used, and the water is not filled to the mark that indicates a total volume of 100.00 mL . The point was not earned in part (c)(i) because the equation is not a netionic equation. The points were earned in parts (c)(ii) and (c)(ii).

Sample: 5C

Score: 3
The points were not earned in part (a). The first point was earned in part (b) for the correct mass of solute (even though the student identifies the solute as HCl instead of $\mathrm{NH}_{4} \mathrm{Cl}$). The other 2 points were not earned because the volumetric flask is not used, and the water is not filled to the mark that indicates a total volume of 100.00 mL . The points were earned in parts (c)(i) and (c)(ii). In part (c)(iii) the point was not earned because the student does not write about the importance of the ratio of acetate to acetic acid but simply states the obvious relationship between H^{+}concentration and pH .

