AP[®] CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Question 3

$$2 \operatorname{H}_2(g) \ + \ \operatorname{O}_2(g) \ \rightarrow \ 2 \operatorname{H}_2\operatorname{O}(l)$$

In a hydrogen-oxygen fuel cell, energy is produced by the overall reaction represented above.

(a) When the fuel cell operates at 25°C and 1.00 atm for 78.0 minutes, 0.0746 mol of $O_2(g)$ is consumed. Calculate the volume of $H_2(g)$ consumed during the same time period. Express your answer in liters measured at 25°C and 1.00 atm.

$(0.0746 \text{ mol } O_2) \times \frac{2 \text{ mol } H_2}{1 \text{ mol } O_2} = 0.149 \text{ mol } H_2$	One point is earned for calculation of moles of H_2 .
$V = \frac{n_{\text{H}_2}RT}{P} = \frac{(0.149 \text{ mol H}_2)(0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1})(298 \text{ K})}{1.00 \text{ atm}}$ $= 3.65 \text{ L H}_2$	One point is earned for substitution into $PV = nRT$. One point is earned for the answer.

- (b) Given that the fuel cell reaction takes place in an acidic medium,
 - (i) write the two half reactions that occur as the cell operates,

$O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$	One point is earned for each
$\mathrm{H_2}~\rightarrow~2~\mathrm{H^+}~+~2~e^-$	of the two half reactions.

(ii) identify the half reaction that takes place at the cathode, and

$O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$	One point is earned for either the equation of the correct half reaction, or for indicating "the reduction half reaction" if the correct equation is given in (b)(i).
--	---

(iii) determine the value of the standard potential, E° , of the cell.

$E^{\circ} = 1.23 \text{V} + 0.00 \text{ V} = 1.23 \text{ V}$	One point is earned for the standard potential.

© 2007 The College Board. All rights reserved.

AP[®] CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Question 3 (continued)

(c) Calculate the charge, in coulombs, that passes through the cell during the 78.0 minutes of operation as described in part (a).

$$(0.0746 \text{ mol } O_2) \times \frac{4 \text{ mol } e^-}{1 \text{ mol } O_2} \times \frac{96,500 \text{ C}}{1 \text{ mol } e^-} = 2.88 \times 10^4 \text{ C}$$

One point is earned for the stoichiometry.
One point is earned for the answer.

- 3. In a hydrogen-oxygen fuel cell, energy is produced by the overall reaction represented above.
 - (a) When the fuel cell operates at 25°C and 1.00 atm for 78.0 minutes, 0.0746 mol of O₂(g) is consumed. Calculate the volume of H₂(g) consumed during the same time period. Express your answer in liters measured at 25°C and 1.00 atm.
 - (b) Given that the fuel cell reaction takes place in an acidic medium,
 - (i) write the two half reactions that occur as the cell operates,
 - (ii) identify the half reaction that takes place at the cathode, and
 - (iii) determine the value of the standard potential, E° , of the cell.
 - (c) Calculate the charge, in coulombs, that passes through the cell during the 78.0 minutes of operation as described in part (a).

2molH2 _ 0.1492 mol Hz consumed 0.0746mol 0. Ω LmolO2 RI=nR7 0.1492)(.0821) τ F=0.00V Hz(a) - 2H+1e 02(a) + 4H++4e-+ 2HzO(0) the reduction reaction takes place at the Cathode, thus. O2(9)+41 F+4e-+2H20(1) I takes place at the cathode. 0,001+1,231= 1.231 0,1492 mol HzX 96500 = 28800 Coulombs 2mole Inol Hz mole -14-GO ON TO THE NEXT PAGE.

©2007 The College Board. All rights reserved.

- 3. In a hydrogen-oxygen fuel cell, energy is produced by the overall reaction represented above.
 - (a) When the fuel cell operates at 25°C and 1.00 atm for 78.0 minutes, 0.0746 mol of $O_2(g)$ is consumed. Calculate the volume of $H_2(g)$ consumed during the same time period. Express your answer in liters measured at 25°C and 1.00 atm.
 - (b) Given that the fuel cell reaction takes place in an acidic medium,
 - (i) write the two half reactions that occur as the cell operates,
 - (ii) identify the half reaction that takes place at the cathode, and
 - (iii) determine the value of the standard potential, E° , of the cell.
 - (c) Calculate the charge, in coulombs, that passes through the cell during the 78.0 minutes of operation as described in part (a).

$3)(a) V = \frac{nH}{P}$	
0:0746 mol 02 × 3 = 0.1492 mol Hz	
$V = \frac{(0.1492)(0.08206)(299)}{(0.108206)(299)}$	
V=3.65 L	
(i) 02(q) + 4 H+ +4e -> 240(1)	E° = 1.23V
$2H++2e^{-} H_{2}(q)$	$\Sigma^{\circ} = 0.00$
02(g) + 4+++++= -> 2H20(1)	. "
4H2.(q) -> 4H+ + 46-	2 cal= 1.23V
4H219) + 0219) -> 2H2011)	
$(n') 021(g) + 4H+ + 4e^{-} \rightarrow 2H_{20}(1)$	
(III) working in (1)	
5°cell = 1.23V	
© I=34	
1.23 = 378	
q=95.94 C	
V	
4.4	
-14-	GU UN TU THE NEXT PAGE.

©2007 The College Board. All rights reserved.

- 3. In a hydrogen-oxygen fuel cell, energy is produced by the overall reaction represented above.
 - (a) When the fuel cell operates at 25°C and 1.00 atm for 78.0 minutes, 0.0746 mol of $O_2(g)$ is consumed. Calculate the volume of $H_2(g)$ consumed during the same time period. Express your answer in liters measured at 25°C and 1.00 atm. .
 - (b) Given that the fuel cell reaction takes place in an acidic medium,
 - (i) write the two half reactions that occur as the cell operates,
 - (ii) identify the half reaction that takes place at the cathode, and
 - (iii) determine the value of the standard potential, E° , of the cell.
 - (c) Calculate the charge, in coulombs, that passes through the cell during the 78.0 minutes of operation as described in part (a).

Since 0.0746 moles of 02 is consumed. 0.1492 moles 2 H2: 1 02 (9) were consumed. ofmoles x (22,4 L/ mole) = 3,34 L *(b)* H26-7 2H+ + 2e-(i) 4H++4e- ->2H20 where the cation goes to get reduced. (ii)cathode = (where reduction takes place.) gaining electrons, so reduction = + [4e] -> 2H20 occurs at the cathode 4H+ Lagin of electrons (iri) $H_2(a) \rightarrow$ -> 2H20 og(Q Ecell a (0.0017) moles e-27 coulombs T assume 14040 coulombs 3 -14-

GO ON TO THE NEXT PAGE.

©2007 The College Board. All rights reserved.

AP[®] CHEMISTRY 2007 SCORING COMMENTARY (Form B)

Question 3

Sample: 3A Score: 9

This response earned all 9 points: 3 for part (a), 2 for part (b)(i), 1 for part (b)(ii), 1 for part (b)(iii), and 2 for part (c).

Sample: 3B Score: 7

This response earned all 7 points for parts (a) and (b). No points were earned for part (c) because the student incorrectly substitutes the voltage as current into an incorrect equation.

Sample: 3C Score: 6

In part (a) 1 point was earned for the correct ratio of moles of oxygen to moles of hydrogen; only 1 of the remaining 2 points for this part was earned because the student incorrectly attempts to calculate the volume under STP conditions. All 4 points were earned for part (b). No points were earned for part (c) because use of the Nernst equation is inappropriate.