AP ${ }^{\circledR}$ CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Question 2

Answer the following problems about gases.
(a) The average atomic mass of naturally occurring neon is 20.18 amu . There are two common isotopes of naturally occurring neon as indicated in the table below.

Isotope	Mass (amu)
$\mathrm{Ne}-20$	19.99
$\mathrm{Ne}-22$	21.99

(i) Using the information above, calculate the percent abundance of each isotope.

Let x represent the natural abundance of $\mathrm{Ne}-20$.

$$
\begin{aligned}
19.99 x+21.99(1-x) & =20.18 \\
19.99 x+21.99-21.99 x & =20.18 \\
19.99 x-21.99 x & =20.18-21.99 \\
-2 x & =-1.81 \\
x & =0.905
\end{aligned}
$$

\Rightarrow percent abundances are: $\quad \mathrm{Ne}-20=90.5 \%$

$$
\mathrm{Ne}-22=9.5 \%
$$

(ii) Calculate the number of $\mathrm{Ne}-22$ atoms in a 12.55 g sample of naturally occurring neon.

$12.55 \mathrm{~g} \mathrm{Ne} \times \frac{1 \mathrm{~mol} \mathrm{Ne}}{20.18 \mathrm{~g} \mathrm{Ne}} \times \frac{0.095 \mathrm{~mol} \mathrm{Ne}-22}{1 \mathrm{~mol} \mathrm{Ne}} \times \frac{6.022 \times 10^{23} \mathrm{Ne}-22 \text { atoms }}{1 \mathrm{~mol} \mathrm{Ne}-22}$	One point is earned for the correct molar mass.
$=3.6 \times 10^{22 \mathrm{Ne}-22 \text { atoms }}$One point is earned for the correct fraction of Ne- 22 in Ne. One point is earned for the number of atoms.	

AP ${ }^{\circledR}$ CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Question 2 (continued)

(b) A major line in the emission spectrum of neon corresponds to a frequency of $4.34 \times 10^{-14} \mathrm{~s}^{-1}$. Calculate the wavelength, in nanometers, of light that corresponds to this line.

$$
\begin{aligned}
c & =\lambda v \Rightarrow \lambda=\frac{c}{v} \\
\lambda & =\frac{3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}}{4.34 \times 10^{14} \mathrm{~s}^{-1}} \times \frac{1 \mathrm{~nm}}{10^{-9} \mathrm{~m}}=690 \mathrm{~nm}
\end{aligned}
$$

One point is earned for the correct setup

One point is earned for the answer.
(c) In the upper atmosphere, ozone molecules decompose as they absorb ultraviolet (UV) radiation, as shown by the equation below. Ozone serves to block harmful ultraviolet radiation that comes from the Sun.

$$
\mathrm{O}_{3}(g) \xrightarrow{\mathrm{UV}} \mathrm{O}_{2}(g)+\mathrm{O}(g)
$$

A molecule of $\mathrm{O}_{3}(g)$ absorbs a photon with a frequency of $1.00 \times 10^{15} \mathrm{~s}^{-1}$.
(i) How much energy, in joules, does the $\mathrm{O}_{3}(g)$ molecule absorb per photon?

$$
\begin{aligned}
E & =h v \\
& =6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 1.00 \times 10^{15} \mathrm{~s}^{-1} \\
& =6.63 \times 10^{-19} \mathrm{~J} \text { per photon }
\end{aligned}
$$

One point is earned for the correct answer.
(ii) The minimum energy needed to break an oxygen-oxygen bond in ozone is $387 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Does a photon with a frequency of $1.00 \times 10^{15} \mathrm{~s}^{-1}$ have enough energy to break this bond? Support your answer with a calculation.
$\frac{6.63 \times 10^{-19} \mathrm{~J}}{1 \text { photon }} \times \frac{6.022 \times 10^{23} \text { photons }}{1 \mathrm{~mol}} \times \frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~J}}=399 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$399 \mathrm{~kJ} \mathrm{~mol}^{-1}>387 \mathrm{~kJ} \mathrm{~mol}^{-1}$, therefore the bond can be broken.

One point is earned for calculating the energy.

One point is earned for the comparison of bond energies.
2. Answer the following problems about gases.
(a) The average atomic mass of naturally occurring neon is 20.18 amu . There are two common isotopes of naturally occurring neon as indicated in the table below.

Isotope	Mass (amu)
$\mathrm{Ne}-20$	19.99
$\mathrm{Ne}-22$	21.99

(i) Using the information above, calculate the percent abundance of each isotope.
(ii) Calculate the number of $\mathrm{Ne}-22$ atoms in a 12.55 g sample of naturally occurring neon.
(b) A major line in the emission spectrum of neon corresponds to a frequency of $4.34 \times 10^{14} \mathrm{~s}^{-1}$. Calculate the wavelength, in nanometers, of light that corresponds to this line.
(c) In the upper atmosphere, ozone molecules decompose as they absorb ultraviolet (UV) radiation, as shown by the equation below. Ozone serves to block harmful ultraviolet radiation that comes from the Sun.

$$
\mathrm{O}_{3}(\mathrm{~g}) \xrightarrow{\mathrm{uv}} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

A molecule of $\mathrm{O}_{3}(\mathrm{~g})$ absorbs a photon with a frequency of $1.00 \times 10^{15} \mathrm{~s}^{-1}$.
(i) How much energy, in joules, does the $\mathrm{O}_{3}(\mathrm{~g})$ molecule absorb per photon?
(ii) The minimum energy needed to break an oxygen-oxygen bond in ozone is $387 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Does a photon with a frequency of $1.00 \times 10^{15} \mathrm{~s}^{-1}$ have enough energy to break this bond? Support your answer with a calculation.
(Q) (i) suppose the abundance of $\mathrm{Ne}-2 \mathrm{O}$ is x

$$
\begin{aligned}
& 19.99 x+(1-x) \times 21.99=20.18 \\
& x=90.5 \% \\
&(1-x)=100 \%-90.5 \%=9.5 \%
\end{aligned}
$$

The abundance of $\mathrm{Ne}-2 \mathrm{O}$ is 90.5%
The abundance of $\mathrm{Ne}-22$ is 7.5%
(ii) ? atamNe-22 $=12.55 \mathrm{~g} \times\left(\frac{9.5 \%}{100 \%}\right) \times\left(\frac{1 \mathrm{~mol}}{21.98 \mathrm{~g}}\right) \times\left(\frac{6.02 \times 10^{23} \mathrm{atoms}}{1 \mathrm{mot}}\right)$

$$
=3.26 \times 10^{22} \text { atoms }
$$

There are 326×10^{22} atoms of $\mathrm{Ne}-22$
(b) $\quad \lambda f=c$

$$
\lambda=\frac{c}{f}=\frac{3 \times 10^{0} \mathrm{~m} / \mathrm{s}}{4.34 \times 1 / \mathrm{d} / \mathrm{s}}=0.691 \times 10^{-6} \mathrm{~m}=69 / \mathrm{nm}
$$

The wavelength is 691 nm
(C) (i) $\quad E=h v$

$$
\begin{aligned}
& =6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~S} \times 1 \times 10^{15} \cdot \mathrm{~S}^{-1} \\
& =6.63 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

the O_{3} molecule absorbs $6.63 \times 10^{-19} \mathrm{I}$ energy per photon
(ii) Energy per mole photon $=E \times N a$
$=6.63 \times 10^{-19} \mathrm{~J} \times 6.02 \times 10^{23} / \mathrm{mol}$
$=3.99 \times 10^{5} \mathrm{~J} / \mathrm{mol}$
$=398 \mathrm{~kJ} / \mathrm{mol}$
Since Energy per mole photons exceeds $387 \mathrm{~kJ} /$ mole A photon with a frequency of $1 \times 10^{15} \mathrm{~s}^{-1}$ can break the bond
2. Answer the following problems about gases.
(a) The average atomic mass of naturally occurring neon is 20.18 amu . There are two common isotopes of naturally occurring neon as indicated in the table below.

Isotope	Mass (amu)
Ne-20	19.99
$\mathrm{Ne}-22$	21.99

(i) Using the information above, calculate the percent abundance of each isotope.
(ii) Calculate the number of $\mathrm{Ne}-22$ atoms in a 12.55 g sample of naturally occuring neon.
(b) A major line in the emission spectrum of neon corresponds to a frequency of $4.34 \times 10^{14} \mathrm{~s}^{-1}$. Calculate the wavelength, in nanometers, of light that corresponds to this line.
(c) In the upper atmosphere, ozone molecules decompose as they absorb ultraviolet (UV) radiation, as shown by the equation below. Ozone serves to block harmful ultraviolet radiation that comes from the Sun.

$$
\mathrm{O}_{3}(\mathrm{~g}) \xrightarrow{\mathrm{UV}} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

A molecule of $\mathrm{O}_{3}(\mathrm{~g})$ absorbs a photon with a frequency of $1.00 \times 10^{15} \mathrm{~s}^{-1}$.
(i) How much energy, in joules, does the $\mathrm{O}_{3}(\mathrm{~g})$ molecule absorb per photon?
(ii) The minimum energy needed to break an oxygen-oxygen bond in ozone is $387 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Does a photon with a frequency of $1.00 \times 10^{15} \mathrm{~s}^{-1}$ have enough energy to break this bond? Support your answer with a calculation.

AUUITIUNAL PAGE FOR ANSWERING QUESTION 2.
ii) Based on $7 / 4$ abudavee, Mass of $\mathrm{Ne}-22$ is $\frac{9.5}{100} \times 1255 \mathrm{~g}=1.192 \mathrm{~g} \mathrm{Ne-22}$

Based on Mass, amp.

$$
\begin{aligned}
& 1.192 \mathrm{gNe}-22 \times \quad \frac{\mathrm{malNe}-22}{21.99 \mathrm{ge-22}} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{malNe} 22} \\
& =3.264 \times 10^{22} \mathrm{Ne}-22 \text { atoms. }
\end{aligned}
$$

b) $c=$ Wavelength x frequevey

frequent

$$
\begin{aligned}
\frac{3.0 \times 10^{8} \mathrm{~ms}^{-1}}{4.34 \times 10^{14} \mathrm{~s}^{-1}} & =\text { wavelength } \\
& =6.912 \times 10^{-7} \mathrm{~m} \\
6.412 \times 10^{-7} \mathrm{~m} & \times 1 \times 10^{+9} \mathrm{~mm}=691 \mathrm{~mm}
\end{aligned}
$$

c) i) $E=h v$

$$
\begin{aligned}
E & =6.63 \times 10^{-34} \mathrm{~J} \times 1.00 \times 10^{15} \mathrm{~s}^{-1} \\
& =6.63 \times 10^{-19} \mathrm{~J} \text { of energy per photon }
\end{aligned}
$$

ii). From port c(i), it is identified that $1.00 \times 10^{15} \mathrm{~s}^{-1}$ only yields $6.63 \times 10^{-19} \mathrm{~J}$ if energy.

- Te break an 0-0 band $1387000 \frac{\mathrm{~mol}}{\mathrm{~mol}}$ is needed.
- Therefore there is not sufficient energy to break the bonds of $0-0$
Therefore it is not possible to break an $0-0$ band with a frequency of $1.00 \times 10^{15} x^{-1}$.
-11-

2. Answer the following problems about gases.

(a) The average atomic mass of naturally occurring neon is 20.18 amu . There are two common isotopes of naturally occurring neon as indicated in the table below.

Isotope	Mass (amu)
$\mathrm{Ne}-20$	19.99
$\mathrm{Ne}-22$	21.99

(i) Using the information above, calculate the percent abundance of each isotope.
(ii) Calculate the number of $\mathrm{Ne}-22$ atoms in a 12.55 g sample of naturally occurring neon.
(b) A major line in the emission spectrum of neon corresponds to a frequency of $4.34 \times 10^{14} \mathrm{~s}^{-1}$. Calculate the wavelength, in nanometers, of light that corresponds to this line.
(c) In the upper atmosphere, ozone molecules decompose as they absorb ultraviolet (UV) radiation, as shown by the equation below. Ozone serves to block harmful ultraviolet radiation that comes from the Sun.

$$
\mathrm{O}_{3}(\mathrm{~g}) \xrightarrow{\mathrm{uv}} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

A molecule of $\mathrm{O}_{3}(\mathrm{~g})$ absorbs a photon with a frequency of $1.00 \times 10^{15} \mathrm{~s}^{-1}$.
(i) How much energy, in joules, does the $\mathrm{O}_{3}(\mathrm{~g})$ molecule absorb per photon?
(ii) The minimum energy needed to break an oxygen-oxygen bond in ozone is $387 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Does a photon with a frequency of $1.00 \times 10^{15} \mathrm{~s}^{-1}$ have enough energy to break this bond? Support your answer with a calculation.

```
a is \(19.94 \times \frac{x}{100}+21.99 \times \frac{100 x}{100}=20.18\)
    \(19.99 x+2199-21.99 x=2018\)
        \(2 x=181 \Rightarrow x=90.5\)
    \(\Rightarrow N_{8}-20=90.5 \%\)
    \(\Delta e-22=9.5 \% ~ \% ~\)
    ii) \(\begin{aligned} & \frac{m \pi}{1}=\text { mole } \\ & \frac{1255}{21.99}=0.5707 \text { mole } \\ & \text { atoms }=6.02 \times 10^{23} \times 0.5707=3.436 \times 10^{23} \text { atoms }\end{aligned}\)
```

atoms $=6.02 \times 10^{23} \times 0.5707=3.436 \times 10^{23}$ atoms
\qquad
\qquad
\qquad

$$
\text { b) } \begin{aligned}
& c=\lambda \nu \\
& 3 \times 10^{8}=\lambda \times 4.34 \times 10^{14} \\
& \lambda=6.91 \times 10^{-7} \mathrm{mu} \\
& \text { (i) } E=h_{\mu} \\
&=6.63 \times 10^{-34} \times 1 \times 10^{15} \\
&=6.63 \times 10^{-19} \mathrm{~J} \\
& \text { ii) Noil enough! } \\
& \text { Because } 6.63 \times 10^{-19} \mathrm{~J} \ll 387 \mathrm{~kJ}
\end{aligned}
$$

AP ${ }^{\circledR}$ CHEMISTRY
 2007 SCORING COMMENTARY (Form B)

Question 2

Sample: 2A

Score: 8
This response earned 8 out of 9 points: 1 for part (a)(i), 2 for part (a)(ii), 2 for part (b), 1 for part (c)(i), and 2 for part (c)(ii). The third point was not earned in part (a)(ii) because the molar mass used for neon is 21.99 g instead of 20.18 g .

Sample: 2B

Score: 5

The point was earned in part (a)(i). Only 1 point was earned in part (a)(ii) because the molar mass used for neon is 21.99 g instead of 20.18 g , and there is also an error in significant figures. Both points were earned for part (b). The point was earned in part (c)(i). No points were earned in part (c)(ii) because the student does not calculate the energy required to break the $\mathrm{O}-\mathrm{O}$ bond but rather compares energy values with different units.

Sample: 2C

Score: 4
The point was earned in part (a)(i). Only 1 point was earned in part (a)(ii) because the molar mass used for neon is 21.99 g instead of 20.18 g , and the percentage abundance is not used in the calculation. However, a point was earned for correctly calculating the number of atoms from the incorrect number of moles. Only 1 point was earned for part (b) because the answer is not given in nanometers. The point was earned in part (c)(i). No points were earned in part (c)(ii) because the student does not calculate the required energy value and compares values with different units.

