AP ${ }^{\circledR}$ CHEMISTRY
 2007 SCORING GUIDELINES (Form B)

Question 1

A sample of solid $\mathrm{U}_{3} \mathrm{O}_{8}$ is placed in a rigid 1.500 L flask. Chlorine gas, $\mathrm{Cl}_{2}(g)$, is added, and the flask is heated to $862^{\circ} \mathrm{C}$. The equation for the reaction that takes place and the equilibrium-constant expression for the reaction are given below.

$$
\mathrm{U}_{3} \mathrm{O}_{8}(s)+3 \mathrm{Cl}_{2}(g) \rightleftarrows 3 \mathrm{UO}_{2} \mathrm{Cl}_{2}(g)+\mathrm{O}_{2}(g) \quad K_{p}=\frac{\left(p_{\mathrm{UO}_{2} \mathrm{Cl}_{2}}\right)^{3}\left(p_{\mathrm{O}_{2}}\right)}{\left(p_{\mathrm{Cl}_{2}}\right)^{3}}
$$

When the system is at equilibrium, the partial pressure of $\mathrm{Cl}_{2}(g)$ is 1.007 atm and the partial pressure of $\mathrm{UO}_{2} \mathrm{Cl}_{2}(g)$ is $9.734 \times 10^{-4} \mathrm{~atm}$.
(a) Calculate the partial pressure of $\mathrm{O}_{2}(g)$ at equilibrium at $862^{\circ} \mathrm{C}$.

	$\mathrm{U}_{3} \mathrm{O}_{8}$	$3 \mathrm{Cl}_{2}(\mathrm{~g})$	$\longrightarrow 3 \mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+$	$\mathrm{O}_{2}(g)$	
I	---	?	0	0	
C					
E		1.007 atm	$9.734 \times 10^{-4} \mathrm{~atm}$?	One point is earned for the correct answer.
$9.734 \times 10^{-4} \mathrm{~atm} \mathrm{UO}_{2} \mathrm{Cl}_{2}(g) \times \frac{\left(1 \mathrm{~mol} \mathrm{O}_{2}\right)}{\left(3 \mathrm{~mol} \mathrm{UO}_{2} \mathrm{Cl}_{2}\right)}=3.245 \times 10^{-4} \mathrm{~atm} \mathrm{O} \mathrm{O}_{2}(g)$					

(b) Calculate the value of the equilibrium constant, K_{p}, for the system at $862^{\circ} \mathrm{C}$.

$$
K_{p}=\frac{\left(p_{\mathrm{UO}_{2} \mathrm{Cl}_{2}}\right)^{3}\left(p_{\mathrm{O}_{2}}\right)}{\left(p_{\mathrm{Cl}_{2}}\right)^{3}}=\frac{\left(9.734 \times 10^{-4}\right)^{3}\left(3.245 \times 10^{-4}\right)}{(1.007)^{3}}=2.931 \times 10^{-13}
$$

One point is earned for the correct substitution.

One point is earned for the correct answer.
(c) Calculate the Gibbs free-energy change, ΔG°, for the reaction at $862^{\circ} \mathrm{C}$.

$$
\begin{aligned}
\Delta G^{\circ} & =-R T \ln K_{p} \\
& =\left(-8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)((862+273) \mathrm{K})\left(\ln \left(2.931 \times 10^{-13}\right)\right) \\
& =272,000 \mathrm{~J} \mathrm{~mol}^{-1}=272 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

One point is earned for the correct setup.

One point is earned for the correct answer with units.

AP ${ }^{\circledR}$ CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Question 1 (continued)

(d) State whether the entropy change, ΔS°, for the reaction at $862^{\circ} \mathrm{C}$ is positive, negative, or zero. Justify your answer.
ΔS° is positive because four moles of gaseous products are produced from
One point is earned for three moles of gaseous reactants. the correct explanation
(e) State whether the enthalpy change, ΔH°, for the reaction at $862^{\circ} \mathrm{C}$ is positive, negative, or zero. Justify your answer.

Both ΔG° and ΔS° are positive, as determined in parts (c) and (d) Thus, ΔH° must be positive because ΔH° is the sum of two positive terms in the equation $\Delta H^{\circ}=\Delta G^{\circ}+T \Delta S^{\circ}$.

One point is earned for the correct sign

One point is earned for a correct explanation.
(f) After a certain period of time, 1.000 mol of $\mathrm{O}_{2}(g)$ is added to the mixture in the flask. Does the mass of $\mathrm{U}_{3} \mathrm{O}_{8}(s)$ in the flask increase, decrease, or remain the same? Justify your answer.

The mass of $\mathrm{U}_{3} \mathrm{O}_{8}(s)$ will $\underline{\text { increase }}$ because the reaction is at equilibrium, and the addition of a product creates a "stress" on the product (right) side of the reaction. The reaction will then proceed from right to left to reestablish equilibrium so that some $\mathrm{O}_{2}(g)$ is consumed (tending to relieve the stress) as

One point is earned for a correct explanation. more $\mathrm{U}_{3} \mathrm{O}_{8}(s)$ is produced.

CHEMISTRY

Section II

(Total time -95 minutes)

Part A

Time-55 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you de rot. At ention should be paid to significant figures.

Be sure to whit ali your answers to the questions on the lined pages following each question in this booklet. Do NOT write your answers on the lavender insert.

Answer Questions 1, 2, and 3. The Section Π score weighting or each question is 20 per.

1. A $\quad \mathrm{rl}, \therefore \mathrm{U}_{3} \mathrm{O}_{2}$ is placed in a rigid 1.500 L flask. Chlorine gas, $\mathrm{Cl}_{2}(\mathrm{~g})$, is $\therefore \mathrm{d}$, and the flask is heated , are shive : \ldots,

$$
\mathrm{T}_{3} \mathrm{O}_{8}(s)+3 \mathrm{Cl}_{2}(g) \rightleftarrows 3 \mathrm{UO}_{2} \mathrm{Cl}_{2}(g)+\mathrm{O}_{2}(g) \quad K_{p}=\frac{\left(p_{\mathrm{UO}_{2} \mathrm{Cl}_{2}}\right)^{3}\left(p_{\mathrm{O}_{2}}\right)}{\left(p_{\mathrm{Cl}_{2}}\right)^{3}}
$$

When the system is at equilibrium, the partial pressure of $\mathrm{Cl}_{2}(\mathrm{~g})$ is 1.007 atm and the partial pressure of $\mathrm{UO}_{2} \mathrm{Cl}_{2}(g)$ is $9.734 \times 10^{-4} \mathrm{~atm}$.
(a) Calculate the partial pressure of $\mathrm{O}_{2}(g)$ at equilibrium at $862^{\circ} \mathrm{C}$.
(b) Calculate the value of the equilibrium constant, K_{p}, for the system at $862^{\circ} \mathrm{C}$.
(c) Calculate the Gibbs free-energy change, ΔG°, for the reaction at $862^{\circ} \mathrm{C}$.
(d) State whether the entropy change, ΔS°, for the reaction at $862^{\circ} \mathrm{C}$ is positive, negative, or zero. Justify your answer.
(e) State whether the enthalpy change, ΔH°, for the reaction at $862^{\circ} \mathrm{C}$ is positive, negative, or zero. Justify your answer.
(f) After a certain period of time, 1.000 mol of $\mathrm{O}_{2}(\mathrm{~g})$ is added to the mixture in the flask. Does the mass of $\mathrm{U}_{3} \mathrm{O}_{8}(s)$ in the flask increase, decrease, or remain the same? Justify your answer.
a) partial pressure is proportional to number of mol
$3 . \operatorname{mol} 40_{2} \mathrm{cl}_{2}: 1 \mathrm{~mol} \mathrm{o}_{2}$
$\frac{1}{3}\left(9.734 \times 10^{-4}\right.$ atm $)=3.345 \times 10^{-4}$ atm
(b)

$$
\begin{aligned}
K_{p} & =\frac{\left(9.734 \times 10^{-4}\right)^{3}\left(3.245^{\times 10} 4\right.}{(1.007)^{3}} \\
& =2.931 \times 10^{-13}
\end{aligned}
$$

(c) at equilibrium, $\Delta G^{0}=-R T \ln K$

$$
\begin{aligned}
& R=0.00831 \mathrm{KJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& T=1135 \mathrm{~K} \\
& K=2.931 \times 10^{-13} \\
& \Delta G^{0}=-(0.00831)(1135) \ln \left(2.931 \times 10^{-13}\right) \\
& \\
& =272.2 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

(d) Positive; a solid and a gas form two gases; 3 mol of gas forms 4 mal of gas.
(e) $\Delta G^{0}=\Delta H^{0}-T \Delta S^{\circ}$
ΔG^{0} is positive
ΔS° is positive
T is positive

$$
(t)=0 H^{0}-(+1
$$

Positive; in order for the equation to remain true.
(f) Increase; adding more $0_{2}(g)$ shifts the equilibrium to the left, producing more Mol $u_{3} o_{8}(s)$ and thus a greater mass as well.

CHEMISTRY

Section II (Total time- 95 minutes)

Part A

Time- 55 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in this booklet. Do NOT write your answers on the lavender insert.

Answer Questions 1, 2, and 3. The Section II score weighting for each question is 20 percent.

1. A sample of solid $\mathrm{U}_{3} \mathrm{O}_{8}$ is placed in a rigid 1.500 L flask. Chlorine gas, $\mathrm{Cl}_{2}(\mathrm{~g})$, is added, and the flask is heated to $862^{\circ} \mathrm{C}$. The equation for the reaction that takes place and the equilibrium-constant expression for the reaction are given below.

$$
\mathrm{U}_{3} \mathrm{O}_{8}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows 3 \mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\begin{aligned}
& p \vee=n R T \quad P=\frac{n R T}{1 \cdot 5} \\
& \mathrm{UO}_{2} \mathrm{Cl}_{2}(g)+\mathrm{O}_{2}(g) \quad K_{p}=\frac{\left(p_{\mathrm{UO}_{2} \mathrm{Cl}_{2}}\right)^{3}\left(p_{\mathrm{O}_{2}}\right)}{\left(p_{\mathrm{Cl}_{2}}\right)^{3}}
\end{aligned}
$$

When the system is at equilibrium, the partial pressure of $\mathrm{Cl}_{2}(\mathrm{~g})$ is 1.007 atm and the partial pressure of $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ is $9.734 \times 10^{-4} \mathrm{~atm}$.
(a) Calculate the partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$ at equilibrium at $862^{\circ} \mathrm{C}$
(b) Calculate the value of the equilibrium constant, K_{p}, for the system at $862^{\circ} \mathrm{C}$.
(c) Calculate the Gibbs free-energy change, ΔG°, for the reaction at $862^{\circ} \mathrm{C}$.
(d) State whether the entropy change, ΔS°, for the reaction at $862^{\circ} \mathrm{C}$ is positive, negative, or zero. Justify your answer.
(e) State whether the enthalpy change, ΔH°, for the reaction at $862^{\circ} \mathrm{C}$ is positive, negative, or zero. Justify your answer.
(f) After a certain period of time, 1.000 mol of $\mathrm{O}_{2}(\mathrm{~g})$ is added to the mixture in the flask. Does the mass of $\mathrm{U}_{3} \mathrm{O}_{8}(s)$ in the flask increase, decrease, or remain the same? Justify your answer.
a)

\qquad
\qquad
b) $x_{p}=\frac{\left(9.734 \times 10^{-4}\right)^{3}(62.1)}{(1.007)^{3}}=5.609 \times 10^{-8}$
c)

$$
\begin{aligned}
\Delta G^{0} & =-R T \operatorname{lnk} \\
& =-8.314 \mathrm{Jmol}^{-1} \mathrm{k}^{-1} \times 1135 \times \ln \left(5.609 \times 10^{-8}\right) \\
& =157552.8 \mathrm{~J} \div 1000 \\
& =+157.55 \mathrm{~kJ}
\end{aligned}
$$

d) positive

There is a phase change when $U_{3} \mathrm{O}_{8}$ (solid) reacts with Cl_{2} : H becomes gas. As solid becomes gas, the entropy increases as the randomness of gas is greater than that of the solid.
e)

$$
\begin{aligned}
\Delta G^{\circ} & =\Delta H^{\circ}-T \Delta S^{\circ} \\
175.55 & =\Delta H^{\circ}-135 \Delta \Delta S^{\circ} \\
\Delta H^{\circ} & =\text { positive }
\end{aligned}
$$

ΔH° is positive because when $U_{3} O_{0}$ reacts with Cl_{2}, it requires energy and the heat is absorbed =endothermic
f) The mass of $U_{3} \mathrm{O}_{8}$ stays the same, This is because 1.00 mol of O_{2} is negligibly small so it do en not affect the man of $\mathrm{U}_{3} \mathrm{O}_{8}$

CHEMISTRY

Section II

(Total time- 95 minutes)

Part A

Time- 55 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in this booklet. Do NOT write your answers on the lavender insert.

Answer Questions 1, 2, and 3. The Section II score weighting for each question is 20 percent.

1. A sample of solid $\mathrm{U}_{3} \mathrm{O}_{8}$ is placed in a rigid 1.500 L flask. Chlorine gas, $\mathrm{Cl}_{2}(\mathrm{~g})$, is added, and the flask is heated to $862^{\circ} \mathrm{C}$. The equation for the reaction that takes place and the equilibrium-constant expression for the reaction are given below. $1.907 \quad 9.734 \times 10^{-4} a^{-2}$

$$
\mathrm{U}_{3} \mathrm{O}_{8}(s)+3 \mathrm{Cl}_{2}(g) \nLeftarrow 3 \mathrm{UO}_{2} \stackrel{\uparrow}{\mathrm{Cl}}(\mathrm{~g})+\mathrm{O}_{2}(g) \quad K_{p}=\frac{\left(p_{\mathrm{UO}_{2} \mathrm{Cl}_{2}}\right)^{3}\left(p_{\mathrm{O}_{2}}\right)}{\left(p_{\mathrm{Cl}_{2}}\right)^{3}}
$$

When the system is at equilibrium, the partial pressure of $\mathrm{Cl}_{2}(\mathrm{~g})$ is 1.007 atm and the partial pressure of $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ is $9.734 \times 10^{-4} \mathrm{~atm}$.
(a) Calculate the partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$ at equilibrium at $862^{\circ} \mathrm{C}$.
(b) Calculate the value of the equilibrium constant, K_{p}, for the system at $862^{\circ} \mathrm{C}$.
(c) Calculate the Gibbs free-energy change, ΔG°, for the reaction at $862^{\circ} \mathrm{C}$.
(d) State whether the entropy change, ΔS°, for the reaction at $862^{\circ} \mathrm{C}$ is positive, negative, or zero. Justify your answer.
(e) State whether the enthalpy change, ΔH°, for the reaction at $862^{\circ} \mathrm{C}$ is positive, negative, or zero. Justify your answer.
(f) After a certain period of time, 1.000 mol of $\mathrm{O}_{2}(\mathrm{~g})$ is added to the mixture in the flask. Does the mass of $\mathrm{U}_{3} \mathrm{O}_{8}(s)$ in the flask increase, decrease, or remain the same? Justify your answer.

$$
k p=9.08 \times 10^{-10}
$$

2) $\Delta G=-R T \ln k$

$$
=-2.303 R T \log K
$$

$$
\Delta G=-2.303 \cdot .0821 \times(862+273 K) \times \log \left(9.08 \times 10^{-10}\right)
$$

$$
\Delta G=+1940 \mathrm{k} \mathrm{\sigma}
$$

1) It is negative became $\Delta G=\Delta H-I \Delta S$ means that Δs has to be a negdue for th Δ to be peositue as it 15 .
e) Negatir as the reaction is extramic and releaser wot
F) Decoecar become it is in equlibriwen and any extra mass takes up its space in h. neaction, since it is added to the same side.

AP ${ }^{\circledR}$ CHEMISTRY
 2007 SCORING COMMENTARY (Form B)

Question 1

Sample: 1A
 Score: 9

This response earned all 9 points: 1 for part (a), 2 for part (b), 2 for part (c), 1 for part (d), 2 for part (e), and 1 for part (f).

Sample: 1B

Score: 6

The point was not earned in part (a) because the student incorrectly attempts to use the Ideal Gas Law to determine the partial pressure of O_{2} gas at equilibrium. Both points were earned in part (b) because the student correctly substitutes and calculates a value for the equilibrium constant using the pressure calculated in part (a). Both points were earned in part (c) because the student correctly substitutes and calculates a value for ΔG° using the K_{p} from part (b). The point was earned in part (d). The first point was earned for part (e) because the student correctly identifies the sign of ΔH° as positive; however, the second point was not earned because the justification given relates to the heat added to start the reaction rather than a connection to the Gibb's equation. The point was not earned in part (f).

Sample: 1C

Score: 3
The point was not earned in part (a). Both points were earned in part (b) because the student correctly substitutes and calculates a value for the equilibrium constant using the calculated pressure from part (a). Only 1 point was earned in part (c) because although the student substitutes correctly, using the K_{p} value calculated in part (b), the incorrect R is used in the equation. No points were earned for parts (d), (e), or (f).

