AP ${ }^{\circledR}$ CHEMISTRY

2007 SCORING GUIDELINES

Question 3

An external direct-current power supply is connected to two platinum electrodes immersed in a beaker containing $1.0 \mathrm{M} \mathrm{CuSO}_{4}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$, as shown in the diagram above. As the cell operates, copper metal is deposited onto one electrode and $\mathrm{O}_{2}(\mathrm{~g})$ is produced at the other electrode. The two reduction half-reactions for the overall reaction that occurs in the cell are shown in the table below.

Half-Reaction	$E^{\circ}(\mathrm{V})$
$\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$	+1.23
$\mathrm{Cu}^{2+}(a q)+2 e^{-} \rightarrow \mathrm{Cu}(s)$	+0.34

(a) On the diagram, indicate the direction of electron flow in the wire.

The electron flow in the wire is from the right toward the left (counterclockwise).	One point is earned for the correct direction.

(b) Write a balanced net ionic equation for the electrolysis reaction that occurs in the cell.

$2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{Cu}^{2+}(a q) \rightarrow 4 \mathrm{H}^{+}(a q)+2 \mathrm{Cu}(s)+\mathrm{O}_{2}(g)$	One point is earned for all three products. One point is earned for balancing the equation.

(c) Predict the algebraic sign of ΔG° for the reaction. Justify your prediction.

The sign of ΔG° would be positive because the reaction is NOT spontaneous.

One point is earned for indicating
that ΔG° is greater than zero and supplying a correct explanation.

AP ${ }^{\circledR}$ CHEMISTRY

2007 SCORING GUIDELINES

Question 3 (continued)

(d) Calculate the value of ΔG° for the reaction.

$$
\begin{aligned}
E^{\circ} & =-1.23 \mathrm{~V}+0.34 \mathrm{~V}=-0.89 \mathrm{~V}=-0.89 \mathrm{~J} \mathrm{C}^{-1} \\
\Delta G^{\circ} & =-n \mathfrak{F} E^{\circ}=-4\left(96,500 \mathrm{C} \mathrm{~mol}^{-1}\right)\left(-0.89 \mathrm{~J} \mathrm{C}^{-1}\right) \\
& =+340,000 \mathrm{~J} \mathrm{~mol}^{-1}=+340 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

One point is earned for calculating E°.
One point is earned for calculating ΔG° (consistent with the calculated E°).

An electric current of 1.50 amps passes through the cell for 40.0 minutes.
(e) Calculate the mass, in grams, of the $\mathrm{Cu}(s)$ that is deposited on the electrode.

$$
\begin{aligned}
& q=\left(1.50 \mathrm{C} \mathrm{~s}^{-1}\right)(40.0 \mathrm{~min}) \times \frac{60 \mathrm{~s}}{1 \text { minute }}=3,600 \mathrm{C} \\
& \text { mass } \mathrm{Cu}=(3,600 \mathrm{C}) \times \frac{1 \mathrm{~mol} e^{-}}{96,500 \mathrm{C}} \times \frac{1 \mathrm{~mol} \mathrm{Cu}}{2 \mathrm{~mol} e^{-}} \times \frac{63.55 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}} \\
& \quad=1.19 \mathrm{~g} \mathrm{Cu}
\end{aligned}
$$

One point is earned for calculating q.
One point is earned for calculating the mass of copper deposited.

OR
Two points are earned for calculating the mass of copper in one step.
(f) Calculate the dry volume, in liters measured at $25^{\circ} \mathrm{C}$ and 1.16 atm , of the $\mathrm{O}_{2}(g)$ that is produced.

$$
\begin{aligned}
n_{\mathrm{O}_{2}} & =(1.19 \mathrm{~g} \mathrm{Cu}) \times \frac{1 \mathrm{~mol} \mathrm{Cu}}{63.55 \mathrm{~g} \mathrm{Cu}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{Cu}}=0.00936 \mathrm{~mol} \mathrm{O}_{2} \\
\mathrm{~V} & =\frac{n R T}{P}=\frac{(0.00936 \mathrm{~mol})\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})}{1.16 \mathrm{~atm}} \\
& =0.197 \mathrm{~L}
\end{aligned}
$$

One point is earned for calculating the number of moles of O_{2}.

One point is earned for calculating V (consistent with previous calculations).

3. An external direct-current power supply is connected to two platinum electrodes immersed in a beaker containing $1.0 \mathrm{M} \mathrm{CuSO}_{4}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$, as shown in the diagram above. As the cell operates, copper metal is deposited onto one electrode and $\mathrm{O}_{2}(g)$ is produced at the other electrode. The two reduction half-reactions for the overall reaction that occurs in the cell are shown in the table below.

Half-Reaction	$E^{\circ}(\mathrm{V})$
$\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$	+1.23
$\mathrm{Cu}^{2+}(a q)+2 e^{-} \rightarrow \mathrm{Cu}(s)$	+0.34

(a) On the diagram, indicate the direction of electron flow in the wire.
(b) Write a balanced net ionic equation for the electrolysis reaction that occurs in the cell.
(c) Predict the algebraic sign of ΔG° for the reaction. Justify your prediction.
(d) Calculate the value of ΔG° for the reaction.

An electric current of 1.50 amps passes through the cell for 40.0 minutes.
(e) Calculate the mass, in grams, of the $\mathrm{Cu}(s)$ that is deposited on the electrode.
(f) Calculate the dry volume, in liters measured at $25^{\circ} \mathrm{C}$ and 1.16 atm , of the $\mathrm{O}_{2}(g)$ that is produced.

\qquad
\qquad
\qquad
\qquad
\qquad
c) Since $E^{0}<0$, the reaction is nonspontancous, and since $A G^{\circ}=-N F E$, the sign of ΔG° is positive, which indicates a nonspontancour reaction.
d)

$$
\begin{aligned}
E^{0} & =E^{3}+E^{0} \text { and } \\
& =+.34-1.23 \\
& =-89 \mathrm{~V} \\
\Delta G^{\prime} & =-n E^{0} \\
& =-4(46500)(-.89) \\
& =340 \mathrm{~kJ}
\end{aligned}
$$

e)

$$
\left.\begin{array}{rl}
q & =I t=(1,5 \mathrm{~A})(40 \mathrm{~min})\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=3600 \mathrm{C} \\
\text { muss } l_{\mathrm{u}} & =(3600 \mathrm{C})\left(\frac{1 \mathrm{~mole}}{}(96,500 \mathrm{C}\right.
\end{array}\right)\left(\frac{2 \mathrm{~mol} \mathrm{cu}}{4 \mathrm{~mole}}\right)\left(\frac{63.55 \mathrm{gCu}}{1 \mathrm{molcu}}\right)
$$

$$
\text { f) } m>1 o_{2}=(3600 \mathrm{c})\left(\frac{1 m a l e^{-}}{96,500 \mathrm{C}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} e^{-}}\right)
$$

$$
=.00932 \mathrm{~mol} \mathrm{o}_{2}
$$

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P}=\frac{(.00932)(.0821)(298)}{1.16} \\
V & =0.197 L
\end{aligned}
$$

3. An external direct-current power supply is connected to two platinum electrodes immersed in a beaker containing $1.0 \mathrm{M} \mathrm{CuSO}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$, as shown in the diagram above. As the cell operates, copper metal is deposited onto one electrode and $\mathrm{O}_{2}(g)$ is produced at the other electrode. The two reduction half-reactions for the overall reaction that occurs in the cell are shown in the table below.

(a) On the diagram, indicate the direction of electron flow in the wire.
(b) Write a balanced net ionic equation for the electrolysis reaction that occurs in the cell.
(c) Predict the algebraic sign of ΔG° for the reaction. Justify your prediction.
(d) Calculate the value of ΔG° for the reaction.

An electric current of 1.50 amps passes through the cell for 40.0 minutes.
(e) Calculate the mass, in grams, of the $\mathrm{Cu}(s)$ that is deposited on the electrode.
(f) Calculate the dry volume, in liters measured at $25^{\circ} \mathrm{C}$ and 1.16 atm , of the $\mathrm{O}_{2}(g)$ that is produced.
b) $\quad \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

c) $\triangle G^{\circ}$ will be negative because it is a galvanic cell reaction, therefore the reaction is spontaneous.
d) $\Delta G^{0}=-n$ J $J_{1} E^{\circ}$

$$
\begin{aligned}
E^{\circ} & =1.23 V+-0.34 V=0.89 V \\
\Delta Q^{0} & =-(4 \mathrm{~mole})(96500 \mathrm{Clmole})(0.89 \mathrm{~V}) \\
& =-3440001 / 1 \mathrm{~kJ}=-344 \mathrm{~kJ}
\end{aligned}
$$

$$
=4.19 \mathrm{~g} \mathrm{Cu}
$$

f) $\frac{1.19 \mathrm{gCu} \mid \mathrm{mol} / \mathrm{cu}}{} / \frac{1 \mathrm{molO}}{63.55 \mathrm{~g}} / 2 \mathrm{~mol} \mathrm{Cu}=0,00936 \mathrm{molO} 2$

$$
\begin{aligned}
& P V=n R T \quad V=(0,00936 \mathrm{~mol})\left(0.082 \frac{\mathrm{Latm}}{\mathrm{mmp}}\right)(998 \mathrm{~K}) \\
& V=\frac{n \mathrm{RT}}{8} \quad .1 .16 \mathrm{tm} \\
& =\frac{0.19741000 \mathrm{~mL}}{11}=197 \mathrm{~mL}
\end{aligned}
$$

\qquad

3. An external direct-current power supply is connected to two platinum electrodes immersed in a beaker containing $1.0 \mathrm{M} \mathrm{CuSO} \mathbf{H}_{4}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$, as shown in the diagram above. As the cell operates, copper metal is deposited onto one electrode and $\mathrm{O}_{2}(g)$ is produced at the other electrode. The two reduction half-reactions for the overall reaction that occurs in the cell are shown in the table below.

Half-Reaction	$E^{\circ}(\mathrm{V})$
$\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 e^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$	+1.23
$\mathrm{Cu}^{2+}(a q)+2 e^{-} \rightarrow \mathrm{Cu}(s)$	+0.34

(a) On the diagram, indicate the direction of electron flow in the wire.
(b) Write a balanced net ionic equation for the electrolysis reaction that occurs in the cell.
(c) Predict the algebraic sign of ΔG° for the reaction. Justify your prediction.
(d) Calculate the value of ΔG° for the reaction.

An electric current of 1.50 amps passes through the cell for 40.0 minutes.
(e) Calculate the mass, in grams, of the $\mathrm{Cu}(s)$ that is deposited on the electrode.
(f) Calculate the dry volume, in liters measured at $25^{\circ} \mathrm{C}$ and 1.16.atm, of the $\mathrm{O}_{2}(g)$ that is produced.
 reaction was spontaneous, but in this case it is riot. The reaction is not spontarieous because a power supply is running the reaction.
d) $\Delta G^{\circ}=-n F E^{\circ}$

$$
=-1(96500 \text { coulombs })(0.34 \mathrm{~V})
$$

$$
\Delta G^{\circ}=-3,3 \times 10^{4 \text { mole }}
$$

E) $(1.50 \mathrm{amps})(40.0 \mathrm{~min})=60$ coulombs

$$
60 \text { coulombs } \times \frac{1 \mathrm{~mol}}{96,500 \text { coulombs }} \therefore \frac{\times \operatorname{lmolcu}}{2 \mathrm{~mole}} \times \frac{63.5 \mathrm{~g} \mathrm{c}}{\operatorname{lmolCu}}=0.0197 \mathrm{~g}
$$

F) $V=\frac{n R T}{F}$

$$
V=\frac{(1 \mathrm{~mol})(.0821 \mathrm{~L}-\mathrm{atm})(298 \mathrm{k})}{(\mathrm{k} \cdot \mathrm{~mol})(1.16 \mathrm{tm})}
$$

$$
V=21.1 \mathrm{~atm} \mathrm{O}_{2}
$$

AP ${ }^{\circledR}$ CHEMISTRY
 2007 SCORING COMMENTARY

Question 3

Overview

This question analyzed an electrolysis experiment. It evaluated students' skills in a number of areas, including electrochemistry, stoichiometry, thermodynamics, and gas laws.

Sample: 3A
Score: 10
This response earned all 10 points: 1 for part (a), 2 for part (b), 1 for part (c), 2 for part (d), 2 for part (e), and 2 for part (f). Acceptable units for ΔG° in part (d) include $\mathrm{kJ}, \mathrm{kJ} \mathrm{mol}^{-1}, \mathrm{~J}, \mathrm{~J} \mathrm{~mol}^{-1}, \mathrm{CV}$, and $\mathrm{CV} \mathrm{mol}{ }^{-1}$.

Sample: 3B

Score: 6

The point was not earned in part (a) because the direction of electron flow is incorrect. In part (b) the equation for the electrolysis reaction is reversed and also is not balanced, so no points were earned. Both points were earned in part (d) because the calculations are consistent with the reversed net-ionic equation obtained in part (b). The point was not earned in part (c) because the response is inconsistent with the calculated E°. (Generally, part (c) was scored after part (d) so that consistency with the E° calculated could be checked. Credit could be earned for stating that ΔG° was negative only if this answer was justified based on a positive E°.) All points were earned in parts (e) and (f).

Sample: 3C
 Score: 3

The point was earned in part (a). The points were not earned in part (b) because the stoichiometry of the equation is incorrect, and the equation is reversed. The point was earned in part (c): the correct sign of ΔG° is given and justified based on the observation that the reaction is not spontaneous. The points were not earned in part (d) because E° is calculated incorrectly, and the value used for n is incorrect. In part (e) the calculation of q omits one of the conversion factors ($60 \mathrm{~s} / 1 \mathrm{~min}$), so the first point was not earned; however, the calculation of the mass of Cu using this incorrect number of coulombs is done correctly, so the second point was earned. The points were not earned in part (f) because the volume of O_{2} calculated is that for $1 \mathrm{~mol} \mathrm{O}_{2}$, not for the amount of O_{2} that would be produced under the conditions given.

