Essential Topic 3: Factoring, Quadratic Equations, Non-Linear Functions, and Transformations

Content Area:	Mathematics
Course(s):	Generic Course, Algebra 1
Time Period:	Semester 2
Length:	12 weeks
Status:	Published

Standards

MA.F-IF.A.1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.
MA.F-IF.A.2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
MA.F-IF.B.4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
MA.A-SSE.B.3a	Factor a quadratic expression to reveal the zeros of the function it defines.
MA.F-IF.C.7a	Graph linear and quadratic functions and show intercepts, maxima, and minima.
MA.F-IF.C.7b	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
MA.A-APR.B	Understand the relationship between zeros and factors of polynomials
MA.A-APR.B.3	Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
MA.F-IF.C.8a	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
MA.F-IF.C.8b	Use the properties of exponents to interpret expressions for exponential functions.
MA.F-IF.C.9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
MA.F-BF.A.1	Write a function that describes a relationship between two quantities.
MA.F-BF.A.1a	Determine an explicit expression, a recursive process, or steps for calculation from a context.
MA.A-CED.A.1	Create equations and inequalities in one variable and use them to solve problems.
MA.A-CED.A.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
MA.F-BF.B.3	Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.
MA.A-REI.A.1	Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
MA.A-REI.B.4	Solve quadratic equations in one variable.
MA.F-LE.A.1	Distinguish between situations that can be modeled with linear functions and with

	exponential functions.
MA.F-LE.A.1a	Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
MA.F-LE.A.1b	Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
MA.F-LE.A.1c	Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
MA.F-LE.A.2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).
MA.F-LE.A.3	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
MA.A-REI.C.7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.
MA.F-LE.B.5	Interpret the parameters in a linear or exponential function in terms of a context.

Enduring Understandings

- 1. Non-Linear functions can be used to model and solve real world problems.
- 2. Real-world situations can be represented symbolically and graphically.
- 3. Different forms of quadratic functions reveal different properties.
- 4. Different transformations can be applied to all functions.

Essential Questions

- 1. How are functions analyzed and evaluated?
- 2. What are the various methods to factoring polynomials, and when is each appropriate?
- 3. How is a quadratic equation graphed and understood?
- 4. What properties do different forms of quadratic functions reveal?
- 5. How do quadratic functions and their solutions model real world problems?
- 6. How is an exponential function graphed and understood?
- 7. How are exponential functions used in real-world problems?
- 8. What are the differences between linear, quadratic, and exponential functions?
- 9. How does changing the equation of a function affect its graph?

Factoring, Quadratic Equations, and Quadratic Functions:

- Factor polynomials completely using various methods
- Solve quadratic equations by factoring, taking square roots, completing the square, and using the quadratic formula
- Graph quadratic equations in factored form and vertex form and identify key points of importance
- Convert between standard form and vertex form of a quadratic function

Exponential Functions:

- Compare linear, quadratic, and exponential models
- Graph exponential functions and identify key points of importance
- Write and use exponential models

Absolute Value:

- Graph absolute value functions
- Determine domain and range of absolute value functions

Transformations:

- Graph functions with transformations, including horizontal and vertical shifts, reflections, and horizontal and vertical stretches and shrinks
- Identify and describe specific function transformations from equations

Transfer Goals

In this unit, students will be able to understand non-linear expressions and equations. Students will be able to model real-world problems with non-linear equations and functions.

Students will be able to evaluate specific points and find maximums/minimums of quadratic equations as well as understand the importance of these skills.

Resources

Holt Algebra 1 by Nichols Holt/1992 ISBN:0-03-005419-2 Algebra Structure and Method Book 1 by Brown McDougal Little/2000 ISBN:0-395-97722-3

graphing calculators

Khan Academy

PurpleMath

KutaSoftware

<u>CK-12</u>

<u>Quizlet</u>

Albert I/O

Desmos

Problem-Attic

<u>Classkick</u>