A Unit 09: Drivetrain Design

1

Science
Robotics A
Marking Period
3
Published

Standards

SCI.9-12.HS-ETS1-1	Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
SCI.9-12.HS-ETS1-3	Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
SCI.9-12.HS-ETS1-2	Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Enduring Understandings

- Physics and geometry play a large role in the design of a moving system and can be used to predict outcomes before testing.
- The intended function of a design and the problems it is required to solve should be one of the major factors considered when making choices for implementation.

Essential Questions

- 1. How can you use friction to your advantage when you create your robot drivetrain?
- 2. How can you use geometry to help select the most efficient drivetrain for your robot?

Resources

- Unit Guide
- Paper
- Pencils
- Rulers
- Internet Access
- Dictionaries
- VEX Robotics Kit
- Computers with Autodesk Inventor
- Storage containers

• Online Resources